425 research outputs found
Experimental estimates of the photon background in a potential light-by-light scattering study
High power short pulse lasers provide a promising route to study the strong field effects of the quantum vacuum, for example by direct photon–photon scattering in the all-optical regime. Theoretical predictions based on realistic laser parameters achievable today or in the near future predict scattering of a few photons with colliding Petawatt laser pulses, requiring single photon sensitive detection schemes and very good spatio-temporal filtering and background suppression. In this article, we present experimental investigations of this photon background by employing only a single high power laser pulse tightly focused in residual gas of a vacuum chamber. The focal region was imaged onto a single-photon sensitive, time gated camera. As no detectable quantum vacuum signature was expected in our case, the setup allowed for characterization and first mitigation of background contributions. For the setup employed, scattering off surfaces of imperfect optics dominated below residual gas pressures of 1 × 10−4 mbar. Extrapolation of the findings to intensities relevant for photon–photon scattering studies is discussed
Proton acceleration by irradiation of isolated spheres with an intense laser pulse
We report on experiments irradiating isolated plastic spheres with a peak laser intensity of 2-3 x 10(20) W cm(-2). With a laser focal spot size of 10 mu m full width half maximum (FWHM) the sphere diameter was varied between 520 nm and 19.3 mu m. Maximum proton energies of similar to 25 MeV are achieved for targets matching the focal spot size of 10 mu m in diameter or being slightly smaller. For smaller spheres the kinetic energy distributions of protons become nonmonotonic, indicating a change in the accelerating mechanism from ambipolar expansion towards a regime dominated by effects caused by Coulomb repulsion of ions. The energy conversion efficiency from laser energy to proton kinetic energy is optimized when the target diameter matches the laser focal spot size with efficiencies reaching the percent level. The change of proton acceleration efficiency with target size can be attributed to the reduced cross-sectional overlap of subfocus targets with the laser. Reported experimental observations are in line with 3D3V particle in cell simulations. They make use of well-defined targets and point out pathways for future applications and experiments.DFG via the Cluster of Excellence Munich-Centre for Advanced Photonics (MAP) Transregio SFB TR18NNSA DE-NA0002008Super-MUC pr48meIvo CermakCGC Instruments in design and realization of the Paul trap systemIMPRS-APSLMUexcellent Junior Research FundDAAD|ToIFEEuropean Union's Horizon research and innovation programme 633053Physic
Advanced Electrocardiographic Predictors of Sudden Death in Familial Dysautonomia
To identify accurate predictors for the risk of sudden death in patients with familial dysautonomia (FD). Ten-minute resting high-fidelity 12-lead ECGs were obtained from 14 FD patients and 14 age/gender-matched healthy subjects. Multiple conventional and advanced ECG parameters were studied for their ability to predict sudden death in FD over a subsequent 4.5-year period, including multiple indices of linear and non-linear heart rate variability (HRV); QT variability; waveform complexity; high frequency QRS; and derived Frank-lead parameters. Four of the 14 FD patients died suddenly during the follow-up period, usually with concomitant pulmonary disorder. The presence of low vagally-mediated HRV was the ECG finding most predictive of sudden death. Concomitant left ventricular hypertrophy and other ECG abnormalities such as increased QTc and JTc intervals, spatial QRS-T angles, T-wave complexity, and QT variability were also present in FD patients, suggesting that structural heart disease is fairly common in FD. Although excessive or unopposed cardiac vagal (relative to sympathetic) activity has been postulated as a contributor to sudden death in FD, the presence of low vagally-mediated HRV was paradoxically the best predictor of sudden death. However, we suggest that low vagally-mediated HRV be construed not as a direct cause of sudden death in FD, but rather as an effect of concurrent pathological processes, especially hypoxia due to pulmonary disorders and sleep apnea, that themselves increase the risk of sudden death in FD and simultaneously diminish HRV. We speculate that adenosine may play a role in sudden death in FD, possibly independently of vagal activity, and that adenosine inhibitors such as theophylline might therefore be useful as prophylaxis in this disorder
Laser-driven x-ray and proton micro-source and application to simultaneous single-shot bi-modal radiographic imaging
Radiographic imaging with x-rays and protons is an omnipresent tool in basic research and applications in industry, material science and medical diagnostics. The information contained in both modalities can often be valuable in principle, but difficult to access simultaneously. Laser-driven solid-density plasma-sources deliver both kinds of radiation, but mostly single modalities have been explored for applications. Their potential for bi-modal radiographic imaging has never been fully realized, due to problems in generating appropriate sources and separating image modalities. Here, we report on the generation of proton and x-ray micro-sources in laser-plasma interactions of the focused Texas Petawatt laser with solid-density, micrometer-sized tungsten needles. We apply them for bi-modal radiographic imaging of biological and technological objects in a single laser shot. Thereby, advantages of laser-driven sources could be enriched beyond their small footprint by embracing their additional unique properties, including the spectral bandwidth, small source size and multi-mode emission. Here the authors show a synchronized single-shot bi-modal x-ray and proton source based on laser-generated plasma. This source can be useful for radiographic and tomographic imaging
Hereditary sensory and autonomic neuropathies: types II, III, and IV
The hereditary sensory and autonomic neuropathies (HSAN) encompass a number of inherited disorders that are associated with sensory dysfunction (depressed reflexes, altered pain and temperature perception) and varying degrees of autonomic dysfunction (gastroesophageal reflux, postural hypotention, excessive sweating). Subsequent to the numerical classification of four distinct forms of HSAN that was proposed by Dyck and Ohta, additional entities continue to be described, so that identification and classification are ongoing. As a group, the HSAN are rare diseases that affect both sexes. HSAN III is almost exclusive to individuals of Eastern European Jewish extraction, with incidence of 1 per 3600 live births. Several hundred cases with HSAN IV have been reported. The worldwide prevalence of HSAN type II is very low. This review focuses on the description of three of the disorders, HSAN II through IV, that are characterized by autosomal recessive inheritance and onset at birth. These three forms of HSAN have been the most intensively studied, especially familial dysautonomia (Riley-Day syndrome or HSAN III), which is often used as a prototype for comparison to the other HSAN. Each HSAN disorder is likely caused by different genetic errors that affect specific aspects of small fiber neurodevelopment, which result in variable phenotypic expression. As genetic tests are routinely used for diagnostic confirmation of HSAN III only, other means of differentiating between the disorders is necessary. Diagnosis is based on the clinical features, the degree of both sensory and autonomic dysfunction, and biochemical evaluations, with pathologic examinations serving to further confirm differences. Treatments for all these disorders are supportive
Recommended from our members
Stable laser-ion acceleration in the light sail regime
We present experimental results on ion acceleration with circularly polarized, ultrahigh contrast laser pulses focused to peak intensities of 5×1019 W cm-2 onto polymer targets of a few 10 nanometer thickness. We observed spatially and energetically separated protons and carbon ions that accumulate to pronounced peaks around 2 MeV containing as much as 6.5% of the laser energy. Based on particle-in-cell simulation, we illustrate that an early separation of heavier carbon ions and lighter protons creates a stable interface that is maintained beyond the end of the radiation pressure dominated acceleration process
A novel approach to electron data background treatment in an online wide-angle spectrometer for laser-accelerated ion and electron bunches
Laser-based ion acceleration is driven by electrical fields emerging when
target electrons absorb laser energy and consecutively leave the target
material. A direct correlation between these electrons and the accelerated ions
is thus to be expected and predicted by theoretical models. We report on a
modified wide-angle spectrometer allowing the simultaneous characterization of
angularly resolved energy distributions of both ions and electrons. Equipped
with online pixel detectors, the RadEye1 detectors, the investigation of this
correlation gets attainable on a single shot basis. In addition to first
insights, we present a novel approach for reliably extracting the primary
electron energy distribution from the interfering secondary radiation
background. This proves vitally important for quantitative extraction of
average electron energies (temperatures) and emitted total charge
Recommended from our members
An automated, 0.5Hz nano-foil target positioning system for intense laser plasma experiments
We report on a target system supporting automated positioning of nano-targets with a precision resolution of in three dimensions. It relies on a confocal distance sensor and a microscope. The system has been commissioned to position nanometer targets with 1Hz repetition rate. Integrating our prototype into the table-top ATLAS 300 TW-laser system at the Laboratory for Extreme Photonics in Garching, we demonstrate the operation of a 0.5Hz laser-driven proton source with a shot-to-shot variation of the maximum energy about 27% for a level of confidence of 0.95. The reason of laser shooting experiments operated at 0.5Hz rather than 1Hz is because the synchronization between the nano-foil target positioning system and the laser trigger needs to improve.DFG Cluster of Excellence Munich-Centre for Advanced Photonics (MAP); Centre for Advanced Laser Applications; China Scholarship [201508080084]SCI(E)ARTICLE
Elliptical Galaxies and Bulges of Disk Galaxies: Summary of Progress and Outstanding Issues
This is the summary chapter of a review book on galaxy bulges. Bulge
properties and formation histories are more varied than those of ellipticals. I
emphasize two advances: 1 - "Classical bulges" are observationally
indistinguishable from ellipticals, and like them, are thought to form by major
galaxy mergers. "Disky pseudobulges" are diskier and more actively star-forming
(except in S0s) than are ellipticals. Theys are products of the slow
("secular") evolution of galaxy disks: bars and other nonaxisymmetries move
disk gas toward the center, where it starbursts and builds relatively flat,
rapidly rotating components. This secular evolution is a new area of galaxy
evolution work that complements hierarchical clustering. 2 - Disks of
high-redshift galaxies are unstable to the formation of mass clumps that sink
to the center and merge - an alternative channel for the formation of classical
bulges. I review successes and unsolved problems in the formation of
bulges+ellipticals and their coevolution (or not) with supermassive black
holes. I present an observer's perspective on simulations of dark matter galaxy
formation including baryons. I review how our picture of the quenching of star
formation is becoming general and secure at redshifts z < 1. The biggest
challenge is to produce realistic bulges+ellipticals and disks that overlap
over a factor of 10**3 in mass but that differ from each other as observed over
that whole range. Second, how does hierarchical clustering make so many giant,
bulgeless galaxies in field but not cluster environments? I argue that we rely
too much on AGN and star-formation feedback to solve these challenges.Comment: 46 pages, 10 postscript figures, accepted for publication in Galactic
Bulges, ed. E. Laurikainen, R. F. Peletier, & D. A. Gadotti (New York:
Springer), in press (2015
- …