241 research outputs found
Forage production and utilization in a sprayed Aspen forest in Alberta
In aspen forest in Alberta, Canada, receiving as little as 3 lb/acre of 2,4-D in a single application achieved an annual herbage production of 874 lb/acre 2 years after treatment compared to only 188 lb/acre in the control. Sprayed forest border areas (small aspen) showed a four-fold increase in herbage production. Grasses, sedges, and forbs increased in herbage production in sprayed forests. Only two forbs were detrimentally affected by the herbicides. In the sprayed forest area, even though there was a considerable amount of obstruction, cattle were able to consume 48% of the total herbage and as much as 58% of the green herbage. However, even with the inclusion of 2,4,5-T in the second herbicide application, there were many woody species in the treatment areas with as high or higher densities than in the control.This material was digitized as part of a cooperative project between the Society for Range Management and the University of Arizona Libraries.The Journal of Range Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform August 202
SPIDER: Probing the Early Universe with a Suborbital Polarimeter
We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a
divergence-free polarization pattern ("B-modes") in the Cosmic Microwave
Background (CMB). In the inflationary scenario, the amplitude of this signal is
proportional to that of the primordial scalar perturbations through the
tensor-to-scalar ratio r. We show that the expected level of systematic error
in the SPIDER instrument is significantly below the amplitude of an interesting
cosmological signal with r=0.03. We present a scanning strategy that enables us
to minimize uncertainty in the reconstruction of the Stokes parameters used to
characterize the CMB, while accessing a relatively wide range of angular
scales. Evaluating the amplitude of the polarized Galactic emission in the
SPIDER field, we conclude that the polarized emission from interstellar dust is
as bright or brighter than the cosmological signal at all SPIDER frequencies
(90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the
"Southern Hole." We show that two ~20-day flights of the SPIDER instrument can
constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when
foreground contamination is taken into account. In the absence of foregrounds,
the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight
schedule updated, two typos fixed in Table 2, references and minor
clarifications added, results unchange
Basic Module Theory over Non-Commutative Rings with Computational Aspects of Operator Algebras
The present text surveys some relevant situations and results where basic
Module Theory interacts with computational aspects of operator algebras. We
tried to keep a balance between constructive and algebraic aspects.Comment: To appear in the Proceedings of the AADIOS 2012 conference, to be
published in Lecture Notes in Computer Scienc
Low Q^2 Jet Production at HERA and Virtual Photon Structure
The transition between photoproduction and deep-inelastic scattering is
investigated in jet production at the HERA ep collider, using data collected by
the H1 experiment. Measurements of the differential inclusive jet
cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the
transverse energy and the pseudorapidity of the jets in the virtual
photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3
< y < 0.6. The interpretation of the results in terms of the structure of the
virtual photon is discussed. The data are best described by QCD calculations
which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure
Hadron Production in Diffractive Deep-Inelastic Scattering
Characteristics of hadron production in diffractive deep-inelastic
positron-proton scattering are studied using data collected in 1994 by the H1
experiment at HERA. The following distributions are measured in the
centre-of-mass frame of the photon dissociation system: the hadronic energy
flow, the Feynman-x (x_F) variable for charged particles, the squared
transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a
function of x_F. These distributions are compared with results in the gamma^* p
centre-of-mass frame from inclusive deep-inelastic scattering in the
fixed-target experiment EMC, and also with the predictions of several Monte
Carlo calculations. The data are consistent with a picture in which the
partonic structure of the diffractive exchange is dominated at low Q^2 by hard
gluons.Comment: 16 pages, 6 figures, submitted to Phys. Lett.
Measurement of D* Meson Cross Sections at HERA and Determination of the Gluon Density in the Proton using NLO QCD
With the H1 detector at the ep collider HERA, D* meson production cross
sections have been measured in deep inelastic scattering with four-momentum
transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88
GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe
the differential cross sections within theoretical and experimental
uncertainties. Using these calculations, the NLO gluon momentum distribution in
the proton, x_g g(x_g), has been extracted in the momentum fraction range
7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon
momentum fraction x_g has been obtained from the measured kinematics of the
scattered electron and the D* meson in the final state. The results compare
well with the gluon distribution obtained from the analysis of scaling
violations of the proton structure function F_2.Comment: 27 pages, 9 figures, 2 tables, submitted to Nucl. Phys.
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Measurement of Leading Proton and Neutron Production in Deep Inelastic Scattering at HERA
Deep--inelastic scattering events with a leading baryon have been detected by
the H1 experiment at HERA using a forward proton spectrometer and a forward
neutron calorimeter. Semi--inclusive cross sections have been measured in the
kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T
<= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV,
or a neutron with energy E' >= 160 GeV. The measurements are used to test
production models and factorization hypotheses. A Regge model of leading baryon
production which consists of pion, pomeron and secondary reggeon exchanges
gives an acceptable description of both semi-inclusive cross sections in the
region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading
neutron data are used to estimate for the first time the structure function of
the pion at small Bjorken--x.Comment: 30 pages, 9 figures, 2 tables, submitted to Eur. Phys.
- …