153 research outputs found

    Mechanical design and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    Full text link
    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling ~5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.Comment: 9 pages, 5 figures, SPIE Astronomical Telescopes and Instrumentation conference proceeding

    The Atacama Cosmology Telescope: Two-Season ACTPol Lensing Power Spectrum

    Get PDF
    We report a measurement of the power spectrum of cosmic microwave background (CMB) lensing from two seasons of Atacama Cosmology Telescope Polarimeter (ACTPol) CMB data. The CMB lensing power spectrum is extracted from both temperature and polarization data using quadratic estimators. We obtain results that are consistent with the expectation from the best-fit Planck LCDM model over a range of multipoles L=80-2100, with an amplitude of lensing A_lens = 1.06 +/- 0.15 (stat.) +/- 0.06 (sys.) relative to Planck. Our measurement of the CMB lensing power spectrum gives sigma_8 Omega_m^0.25 = 0.643 +/- 0.054; including baryon acoustic oscillation scale data, we constrain the amplitude of density fluctuations to be sigma_8 = 0.831 +/- 0.053. We also update constraints on the neutrino mass sum. We verify our lensing measurement with a number of null tests and systematic checks, finding no evidence of significant systematic errors. This measurement relies on a small fraction of the ACTPol data already taken; more precise lensing results can therefore be expected from the full ACTPol dataset.Comment: 17 pages, 11 figures, to be submitted to Physical Review

    The First Hour of Extra-galactic Data of the Sloan Digital Sky Survey Spectroscopic Commissioning: The Coma Cluster

    Full text link
    On 26 May 1999, one of the Sloan Digital Sky Survey (SDSS) fiber-fed spectrographs saw astronomical first light. This was followed by the first spectroscopic commissioning run during the dark period of June 1999. We present here the first hour of extra-galactic spectroscopy taken during these early commissioning stages: an observation of the Coma cluster of galaxies. Our data samples the Southern part of this cluster, out to a radius of 1.5degrees and thus fully covers the NGC 4839 group. We outline in this paper the main characteristics of the SDSS spectroscopic systems and provide redshifts and spectral classifications for 196 Coma galaxies, of which 45 redshifts are new. For the 151 galaxies in common with the literature, we find excellent agreement between our redshift determinations and the published values. As part of our analysis, we have investigated four different spectral classification algorithms: spectral line strengths, a principal component decomposition, a wavelet analysis and the fitting of spectral synthesis models to the data. We find that a significant fraction (25%) of our observed Coma galaxies show signs of recent star-formation activity and that the velocity dispersion of these active galaxies (emission-line and post-starburst galaxies) is 30% larger than the absorption-line galaxies. We also find no active galaxies within the central (projected) 200 h-1 Kpc of the cluster. The spatial distribution of our Coma active galaxies is consistent with that found at higher redshift for the CNOC1 cluster survey. Beyond the core region, the fraction of bright active galaxies appears to rise slowly out to the virial radius and are randomly distributed within the cluster with no apparent correlation with the potential merger of the NGC 4839 group. [ABRIDGED]Comment: Accepted in AJ, 65 pages, 20 figures, 5 table

    When “perverts” were religious: the Protestant sexualisation of asceticism in nineteenth-century Britain, India and Ireland

    Get PDF
    Anti-Catholic polemics from the mid-nineteenth century made frequent comparison between religious practices in Britain, Ireland and India. The supposed atrocities taking place at locations such as Lough Dearg in Country Donegal and at ‘Juggernaut’ (Jagganath) at Puri were denounced in terms which hinted strongly at a striking combination of extreme asceticism and perverse sexual enjoyment. In the same period the word ‘perversion’, which had hitherto referred to apostasy, started to develop connotations of sexual deviance. Protestant sexualised readings of Catholic and Hindu asceticism appear to have been an important site for the development of conceptions of deviant sexuality in general and masochism in particular

    The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters

    Get PDF
    We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time data collected during 2013-14 using two detector arrays at 149 GHz, from 548 deg2^2 of sky on the celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the LCDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. Adding the new data to planck temperature data tightens the limits on damping tail parameters, for example reducing the joint uncertainty on the number of neutrino species and the primordial helium fraction by 20%.Comment: 23 pages, 25 figure

    The Atacama Cosmology Telescope: Modeling the Gas Thermodynamics in BOSS CMASS galaxies from Kinematic and Thermal Sunyaev-Zel'dovich Measurements

    Get PDF
    The thermal and kinematic Sunyaev-Zel'dovich effects (tSZ, kSZ) probe the thermodynamic properties of the circumgalactic and intracluster medium (CGM and ICM) of galaxies, groups, and clusters, since they are proportional, respectively, to the integrated electron pressure and momentum along the line-of-sight. We present constraints on the gas thermodynamics of CMASS galaxies in the Baryon Oscillation Spectroscopic Survey (BOSS) using new measurements of the kSZ and tSZ signals obtained in a companion paper. Combining kSZ and tSZ measurements, we measure within our model the amplitude of energy injection ϵMc2\epsilon M_\star c^2, where MM_\star is the stellar mass, to be ϵ=(40±9)×106\epsilon=(40\pm9)\times10^{-6}, and the amplitude of the non-thermal pressure profile to be αNth<0.2\alpha_{\rm Nth}<0.2 (2σ\sigma), indicating that less than 20% of the total pressure within the virial radius is due to a non-thermal component. We estimate the effects of including baryons in the modeling of weak-lensing galaxy cross-correlation measurements using the best fit density profile from the kSZ measurement. Our estimate reduces the difference between the original theoretical model and the weak-lensing galaxy cross-correlation measurements in arXiv:1611.08606 by half, but does not fully reconcile it. Comparing the kSZ and tSZ measurements to cosmological simulations, we find that they under predict the CGM pressure and to a lesser extent the CGM density at larger radii. This suggests that the energy injected via feedback models in the simulations that we compared against does not sufficiently heat the gas at these radii. We do not find significant disagreement at smaller radii. These measurements provide novel tests of current and future simulations. This work demonstrates the power of joint, high signal-to-noise kSZ and tSZ observations, upon which future cross-correlation studies will improve.Comment: Accepted for publication in Physical Review D. Editors' Suggestion. New Fig. 1-2, Tab.

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo
    corecore