145 research outputs found

    Plant community structure determines primary productivity in shallow, eutrophic lakes

    Get PDF
    Regime shifts are commonly associated with the loss of submerged macrophytes in shallow lakes; yet, the effects of this on whole-lake primary productivity remain poorly understood. This study compares the annual gross primary production (GPP) of two shallow, eutrophic lakes with different plant community structures but similar nutrient concentrations. Daily GPP rates were substantially higher in the lake containing submerged macrophytes (586 ± 23 g C m−2 year−1) than in the lake featuring only phytoplankton and periphyton (408 ± 23 g C m−2 year−1; P \u3c 0.0001). Comparing lake-centre diel oxygen curves to compartmental estimates of GPP confirmed that single-site oxygen curves may provide unreliable estimates of whole-lake GPP. The discrepancy between approaches was greatest in the macrophyte-dominated lake during the summer, with a high proportion of GPP occurring in the littoral zone. Our empirical results were used to construct a simple conceptual model relating GPP to nutrient availability for these alternative ecological regimes. This model predicted that lakes featuring submerged macrophytes may commonly support higher rates of GPP than phytoplankton-dominated lakes, but only within a moderate range of nutrient availability (total phosphorus ranging from 30 to 100 ÎŒg L−1) and with mean lake depths shallower than 3 or 4 m. We conclude that shallow lakes with a submerged macrophyte–epiphyton complex may frequently support a higher annual primary production than comparable lakes that contain only phytoplankton and periphyton. We thus suggest that a regime shift involving the loss of submerged macrophytes may decrease the primary productivity of many lakes, with potential consequences for the entire food webs of these ecosystems

    Convective mixing and high littoral primary production can establish systematic errors in lake diel oxygen curves in shallow, eutrophic lakes

    Get PDF
    The diel (24-h) oxygen (O2) curves approach has become a popular method for analyzing gross primary production (GPP) and ecosystem respiration (ER) rates in aquatic systems. Despite the simplicity of this approach, there remain aspects of the calculation and interpretation of diel O2 curves which may skew results, with potentially large implications for estimates of metabolic rates. One common problem in lakes is the occurrence of unexpected changes in O2concentrations (for instance, increasing overnight O2 concentrations). Such changes have typically been ascribed to the random mixing of pockets of O2. It has thus been suggested that negative GPP or positive ER values should be included in calculations, on the assumption that under- and overestimates should occur with equal frequency, and thus cancel each other out. Our data from a shallow, eutrophic lake provided a high share of negative GPP values. We argue that these may have been the result of elevated littoral productivity coupled with convective currents produced by consistent differences in the heating or cooling of littoral and offshore waters. Such phenomena might be common in small, sheltered lakes where the role of mixing by wind is diminished. We conclude that a failure to account for consistent metabolic gradients and periodic convective mixing may lead to a chronic underestimation of metabolic rates in lakes when using the diel O2 curves method

    Periphyton in urban freshwater facilitates transformation of trace organic compounds: A case study on iodinated contrast media

    Get PDF
    Introduction: Due to urbanization and demographic change trace organic compounds (TrOCs), synthetic chemicals such as pharmaceuticals, personal care products or biocides are an increasing problem in waterbodies affected by treated sewage. This contamination is particularly relevant when surface water is used for drinking water production, either directly or by bank filtration. Removal and transformation of TrOCs are affected by a variety of processes, and we hypothesize that periphyton, the mixture of photo- and heterotrophic biota attached to submerged surfaces of aquatic ecosystems, can facilitate TrOC transformation. Here we experimentally tested the influence of periphyton on different substrates on the transformation of iodinated contrast media (ICM). These hydrophilic compounds are problematic due to their poor removal by conventional wastewater treatment and high persistence of the triiodinated benzoic acid within aquatic environments. Methods: We added 100 Όg L-1 of three ICM, iopromide (IOP), iopamidol (IOM) and diatrizoate (DIA) to batch experiments containing periphyton on artificial substrates or on invasive quagga mussels and to a column experiment with periphyton, quagga mussels and sediment from a bank filtration site in a lake. Results: IOP concentrations were reduced by up to 93% after 30 days in batch experiments with periphyton on artificial substrates and completely in treatments with mussels and periphyton. In contrast, no concentration decrease was observed for IOM and DIA. IOP reduction was positively correlated with periphyton biomass ranging from 0.7 to 9.2 g dry weight m-2 and negatively correlated with oxygen saturation. 9 of 12 known aerobic IOP transformation products frequently occurring in treated wastewater were found. Discussion: We suggest that periphyton facilitated IOP transformation by providing substrate for bacterial growth and enhanced bacterial growth rates due to algal photosynthesis, a co-oxidation catalyzed by ammonia oxidizing bacteria and by a stimulatory influence of labile carbon produced by periphytic algae on the microbially mediated decomposition of IOP. Periphyton is facilitated by increased nutrient supply of dense mussel stands or by an increased surface area provided in dense macrophyte stands. Consequently, changes in the abundance of these littoral communities by invasion or management can affect TrOC transformation and thus water quality for drinking water production from urban freshwaters.Peer Reviewe

    Effects of water temperature on summer periphyton biomass in shallow lakes: a pan-European mesocosm experiment

    Get PDF
    Periphyton communities play an important role in shallow lakes and are controlled by direct forces such as temperature, light, nutrients, and invertebrate grazing, but also indirectly by planktivorous fish predation. We performed a pan-European lake mesocosm experiment on periphyton colonization covering five countries along a north/south geographical/temperature gradient (Estonia, Germany, Czech Republic, Turkey, and Greece). Periphyton biomass on artificial polypropylene strips exposed at 50 cm water depth at low and high nutrient regimes (with mean total phosphorus concentration of 20 and 65 ”g L−1, respectively) was compared during mid-summer. No significant effect of nutrient loading on periphyton biomass was observed as nutrient concentrations in the mesocosms were generally above limiting values. Water temperature significantly enhanced summer periphyton biomass development. Additionally, direct and indirect top-down control of snails and fish emerged as a significant factor in periphyton biomass control

    Boom‐bust dynamics in biological invasions: towards an improved application of the concept

    Get PDF
    Boom‐bust dynamics – the rise of a population to outbreak levels, followed by a dramatic decline – have been associated with biological invasions and offered as a reason not to manage troublesome invaders. However, boom‐bust dynamics rarely have been critically defined, analyzed, or interpreted. Here, we define boom‐bust dynamics and provide specific suggestions for improving the application of the boom‐bust concept. Boom‐bust dynamics can arise from many causes, some closely associated with invasions, but others occurring across a wide range of ecological settings, especially when environmental conditions are changing rapidly. As a result, it is difficult to infer cause or predict future trajectories merely by observing the dynamic. We use tests with simulated data to show that a common metric for detecting and describing boom‐bust dynamics, decline from an observed peak to a subsequent trough, tends to severely overestimate the frequency and severity of busts, and should be used cautiously if at all. We review and test other metrics that are better suited to describe boom‐bust dynamics. Understanding the frequency and importance of boom‐bust dynamics requires empirical studies of large, representative, long‐term data sets that use clear definitions of boom‐bust, appropriate analytical methods, and careful interpretations

    Empirical Correspondence Between Trophic Transfer Efficiency in Freshwater Food Webs and the Slope of Their Size Spectra

    Get PDF
    The density of organisms declines with size, because larger organisms need more energy than smaller ones and energetic losses occur when larger organisms feed on smaller ones. A potential expression of density-size distributions are Normalized Biomass Size Spectra (NBSS), which plot the logarithm of biomass independent of taxonomy within bins of logarithmic organismal size, divided by the bin width. Theoretically, the NBSS slope of multi-trophic communities is exactly 1.0 if the trophic transfer efficiency (TTE, ratio of production rates between adjacent trophic levels) is 10% and the predator-prey mass ratio (PPMR) is fixed at 104 . Here we provide evidence from four multi-trophic lake food webs that empirically estimated TTEs correspond to empirically estimated slopes of the respective community NBSS. Each of the NBSS considered pelagic and benthic organisms spanning size ranges from bacteria to fish, all sampled over three seasons in 1 yr. The four NBSS slopes were significantly steeper than 1.0 (range 1.14 to 1.19, with 95% CIs excluding 1). The corresponding average TTEs were substantially lower than 10% in each of the four food webs (range 1.0% to 3.6%, mean 1.85%). The overall slope merging all biomass-size data pairs from the four systems (1.17) was almost identical to the slope predicted from the arithmetic mean TTE of the four food webs (1.18) assuming a constant PPMR of 104 . Accordingly, our empirical data confirm the theoretically predicted quantitative relationship between TTE and the slope of the biomass-size distribution. Furthermore, we show that benthic and pelagic organisms can be merged into a community NBSS, but future studies have yet to explore potential differences in habitat-specific TTEs and PPMRs. We suggest that community NBSS may provide valuable information on the structure of food webs and their energetic pathways, and can result in improved accuracy of TTE-estimates

    Experimental comparison of periphyton removal by chironomid larvae and Daphnia magna

    Get PDF
    Daphnia magna is a large pelagic cladoceran known to feed on phytoplankton. Our laboratory experiments demonstrate that it can also remove periphyton at rates similar to or higher than chironomid larvae, which are typical periphyton grazers. After a 2-week laboratory exposure at 20 °C, periphyton biomass (dominated by green algae) was significantly reduced by D. magna (38%). Similar periphyton removal was observed for a naturally associated invertebrate community dominated by chironomid larvae (33%) and chironomid larvae alone (37-62%). Periphyton removal rates of all tested grazers were comparable at the community level (360-540 mg dry weight [DW] m-2 d-1). The larger chironomid larvae had higher individual periphyton removal rates (0.12-0.17 mg DW ind.-1 d-1) than D. magna (0.03 mg DW ind.-1 d-1). Body mass-specific periphyton removal rates of D. magna (0.96 mg DW mg grazer DW-1 d-1) were 55% higher than those of chironomids. We suggest that the impact of D. magna on periphyton may be significant when phytoplankton concentrations are low, such as during the clear-water phase or in macrophyte beds where daphnids seek refuge from fish predation.&nbsp

    Exposure pathways matter: Aquatic phototrophic communities respond differently to agricultural run-off exposed via sediment or water

    Get PDF
    1. Small shallow ponds are widespread but understudied water bodies in agricultural landscapes. Agricultural run-off (ARO) transports pesticides and nutrients into adjacent aquatic ecosystems where they occur dissolved in the water column or are bound to sediments. Consequently, aquatic communities are affected by ARO via different exposure pathways. We hypothesize that sediment-bound ARO mainly affects submerged rooted macrophytes, while phytoplankton and periphyton are more prone to ARO in water. These primary producers compete for resources resulting in a regime shift between alternative stable states of macrophyte or phytoplankton dominance. We hypothesize that warming increases nutrient release from sediments and thereby facilitates the occurrence of phytoplankton dominance. 2. Using a full-factorial microcosm design, we exposed aquatic primary producers to either sediment or water application of a mixture of common pesticides (terbuthylazine, pirimicarb, tebuconazole and copper) and nitrate at two concentrations and two temperatures (22°C and 26°C) for 4 weeks. Initial and final concentrations of pesticides and nitrate, final biomass of macrophytes, periphyton and phytoplankton, pesticide accumulation in macrophytes and changes in carbon, nitrogen and phosphorus content and selected exoenzyme activities in the sediment were measured. 3. We found lower final macrophyte biomass for both ARO treatments compared to controls, indicating a prevalence of negative effects by herbicides and competition for light with other phototrophs. In contrast, phytoplankton and periphyton biomass increased, but only when exposed to ARO via the water column, indicating a prevalence of positive effects by nutrient supply. Microbial carbon and nutrient cycling in sediments was not affected by ARO. Higher temperature mitigated ARO-related effects on macrophytes under sediment exposure. 4. Synthesis and application. ARO poses a strong risk of submerged macrophyte loss and establishment of turbid conditions with phytoplankton dominance in aquatic ecosystems. In conclusion, exposure pathways as well as indirect and interacting effects of multiple stressors need to be considered when designing appropriate mitigation measures. Under climate change, we suggest to prioritize local measures as buffer strips a reduced use of pesticides and fertilizers, and sediment removal as appropriate measures to protect these vulnerable but widespread aquatic systems, which are highly relevant for biodiversity in agricultural landscapes

    Environmental impacts — Lake ecosystems

    Get PDF
    The North Sea region contains a vast number of lakes; from shallow, highly eutrophic water bodies in agricultural areas to deep, oligotrophic systems in pristine high-latitude or high-altitude areas. These freshwaters and the biota they contain are highly vulnerable to climate change. As largely closed systems, lakes are ideally suited to studying climate-induced effects via changes in ice cover, hydrology and temperature, as well as via biological communities (phenology, species and size distribution, food-web dynamics, life-history traits, growth and respiration, nutrient dynamics and ecosystem metabolism). This chapter focuses on change in natural lakes and on parameters for which their climate-driven responses have major impacts on ecosystem properties such as productivity, community composition, metabolism and biodiversity. It also points to the importance of addressing different temporal scales and variability in driving and response variables along with threshold-driven responses to environmental forces. Exceedance of critical thresholds may result in abrupt changes in particular elements of an ecosystem. Modelling climate-driven physical responses like ice-cover duration, stratification periods and thermal profiles in lakes have shown major advances, and the chapter provide recent achievements in this field for northern lakes. Finally, there is a tentative summary of the level of certainty for key climatic impacts on freshwater ecosystems. Wherever possible, data and examples are drawn from the North Sea region

    Kunnen wateren met veel ondergedoken waterplanten CO2 uit de atmosfeer vastleggen?

    Get PDF
    Aquatische ecosystemen met veel ondergedoken waterplanten zijn potentiëlehotspots voor de invang van organisch materiaal. Waterplanten slaan koolstofen nutriënten op in hun biomassa, afgestorven planten en andere detritusvormen een organische laag op de bodem. Kunnen dergelijke systemen misschien de hoeveelheid CO2 in de atmosfeer omlaag brengen? En hoe verlooptdie vastlegging als het water door klimaatverandering opwarmt
    • 

    corecore