125 research outputs found

    Project 7708 understanding heritage crime in Kent and Medway – a data analytical approach

    Get PDF
    Our research was concerned with the geographical areas of Kent and Medway and involved the spatial and temporal analysis of ‘heritage-specific offences’, ‘targeted heritage crime’ and ‘crime within, at or close to heritage sites’. The crime data consisted of offence type and location details for the 1,122,180 crimes recorded by Kent Police during the period under study. The geographical data we utilised included locations of Conservation Areas, Listed Buildings, Scheduled Monuments, Registered Parks and Gardens, Registered Battlefields, World Heritage Sites, Protected Wreck Sites and ‘Heritage at Risk’ sites in Kent and Medway. Our best estimates suggest that currently approximately one in five Listed Buildings and one in four Places of Worship in Kent and Medway experience some form of crime each year. About one in ten Scheduled Monuments suffer crime, or it occurs nearby. Just over one half of Registered Parks or Gardens have one or more crimes a year within them. For Conservation Areas the proportion is (not unexpectedly) much larger, at closer to four in five. We utilised local Moran’s I to identify spatial clusters at a regional level using LSOA-level crime data. This revealed several LSOAs on the fringes of areas of high levels of crime that could be particularly vulnerable to the spread of crime and therefore heritage-specific locations within these areas could be managed to halt the ‘spread’ of crime towards the periphery of the town. In Kent and Medway Places of Worship (mostly Christian churches) are experiencing increasing numbers of crimes, and this has been particularly the case since around summer 2016. The rate of increase appears higher than that of all other crimes in the same period, both in general and at other heritage locations. There is clear statistical evidence that metal thefts from churches have also been increasing markedly since around summer 2016. The rate of increase appears higher than that of most other crimes. There is statistically significant correlation between metal thefts from churches in Kent and Medway with both the price of lead and mixed brass. Finally, we discovered that machine learning as a method of heritage crime prevention shows promise

    Data Catalog Series for Space Science and Applications Flight Missions

    Get PDF
    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from geostationary and high altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided

    Acceleration of thermal ions at the lunar surface : Apollo XII observations

    Get PDF
    An experiment designed to measure the differential energy spectrum and a coarse mass spectrum of ions near the lunar surface (Suprathermal Ion Detector Experiment) was deployed by the Apollo XII astronauts. This experiment has yielded evidence for a general mechanism which accelerates originally thermal ions up to several hundred electron volts.by Hans Balsiger, John W. Freeman, Jr., and H. Kent Hills

    Restoration and Reexamination of Apollo Lunar Dust Detector Data from Original Telemetry Files

    Get PDF
    We are recovering the original telemetry (Figure I) from the Apollo Dust, Thermal, Radiation Environment Monitor (DTREM) experiment, more commonly known as the Dust Detector, and producing full time resolution (54 second) data sets for release through the Planetary Data System (PDS). The primary objective of the experiment was to evaluate the effect of dust deposition, temperature, and radiation damage on solar cells on the lunar surface. The monitor was a small box consisting of three solar cells and thermistors mounted on the ALSEP (Apollo Lunar Surface Experiments Package) central station. The Dust Detector was carried on Apollo's 11, 12, 14 and 15. The Apollo 11 DTREM was powered by solar cells and only operated for a few months as planned. The Apollo 12, 14, and 15 detectors operated for 5 to 7 years, returning data every 54 seconds, consisting of voltage outputs from the three solar cells and temperatures measured by the three thermistors. The telemetry was received at ground stations and held on the Apollo Housekeeping (known as "Word 33") tapes. made available to the National Space Science Data Center (NSSDC) by Yosio Nakamura (University of Texas Institute for Geophysics). We have converted selected parts of the telemetry into uncalibrated and calibrated output voltages and temperatures

    Automated Processing of ISIS Topside Ionograms into Electron Density Profiles

    Get PDF
    Modeling of the topside ionosphere has for the most part relied on just a few years of data from topside sounder satellites. The widely used Bent et al. (1972) model, for example, is based on only 50,000 Alouette 1 profiles. The International Reference Ionosphere (IRI) (Bilitza, 1990, 2001) uses an analytical description of the graphs and tables provided by Bent et al. (1972). The Alouette 1, 2 and ISIS 1, 2 topside sounder satellites of the sixties and seventies were ahead of their times in terms of the sheer volume of data obtained and in terms of the computer and software requirements for data analysis. As a result, only a small percentage of the collected topside ionograms was converted into electron density profiles. Recently, a NASA-funded data restoration project has undertaken and is continuing the process of digitizing the Alouette/ISIS ionograms from the analog 7-track tapes. Our project involves the automated processing of these digital ionograms into electron density profiles. The project accomplished a set of important goals that will have a major impact on understanding and modeling of the topside ionosphere: (1) The TOPside Ionogram Scaling and True height inversion (TOPIST) software was developed for the automated scaling and inversion of topside ionograms. (2) The TOPIST software was applied to the over 300,000 ISIS-2 topside ionograms that had been digitized in the fkamework of a separate AISRP project (PI: R.F. Benson). (3) The new TOPIST-produced database of global electron density profiles for the topside ionosphere were made publicly available through NASA s National Space Science Data Center (NSSDC) ftp archive at . (4) Earlier Alouette 1,2 and ISIS 1, 2 data sets of electron density profiles from manual scaling of selected sets of ionograms were converted fiom a highly-compressed binary format into a user-friendly ASCII format and made publicly available through nssdcftp.gsfc.nasa.gov. The new database for the topside ionosphere established as a result of this project, has stimulated a multitude of new studies directed towards a better description and prediction of the topside ionosphere. Marinov et al. (2004) developed a new model for the upper ion transition height (Oxygen to Hydrogen and Helium) and Bilitza (2004) deduced a correction term for the I N topside electron density model. Kutiev et al. (2005) used this data to develop a new model for the topside ionosphere scale height (TISH) as a function of month, local time, latitude, longitude and solar flux F10.7. Comparisons by Belehaki et al. (2005) show that TISH is in general agreement with scale heights deduced from ground ionosondes but the model predicts post-midnight and afternoon maxima whereas the ionosonde data show a noon maximum. Webb and Benson (2005) reported on their effort to deduce changes in the plasma temperature and ion composition from changes in the topside electron density profile as recorded by topside sounders. Limitations and possible improvements of the IRI topside model were discussed by Coisson et al. (2005) including also the possible use of the NeQuick model, Our project progressed in close collaboration and coordination with the GSFC team involved in the ISIS digitization effort. The digitization project was highly successful producing a large amount of digital topside ionograms. Several no-cost extensions of the TOPIST project were necessary to keep up with the pace and volume of the digitization effort

    First-Time Analysis of Completely Restored DTREM Instrument Data from Apollo 14 and 15

    Get PDF
    The Dust, Thermal and Radiation Engineering Measurement (DTREM) packages (figure 1) mounted on the central stations of the Apollo 11, 12, 14, and 15 ALSEPs (Apollo Lunar Surface Experiments Packages) measured the outputs of exposed solar cells and thermistors over time. The goal of the experiment, also commonly known as the dust detector, was to study the long-term effects of dust, radiation, and temperature at the lunar surface on solar cells. The monitors returned data for up to almost 8 years from the lunar surface

    Update on Apollo Data Restoration by the NSSDC and the PDS Lunar Data Node

    Get PDF
    The Lunar Data Node (LDN) , under the auspices of the Geosciences Node of the Planetary Data System (PDS) and the National Space Science Data Center (NSSDC), is continuing its efforts to recover and restore Apollo science data. The data being restored are in large part archived with NSSDC on older media, but unarchived data are also being recovered from other sources. They are typically on 7- or 9-track magnetic tapes, often in obsolete formats, or held on microfilm, microfiche, or paper documents. The goal of the LDN is to restore these data from their current form, which is difficult for most researchers to access, into common digital formats with all necessary supporting data (metadata) and archive the data sets with PDS. Restoration involves reading the data from the original media, deciphering the data formats to produce readable digital data and converting the data into usable tabular formats. Each set of values in the table must then be understood in terms of the quantity measured and the units used. Information on instrument properties, operational history, and calibrations is gathered and added to the data set, along with pertinent references, contacts, and other ancillary documentation. The data set then undergoes a peer review and the final validated product is archived with PDS. Although much of this effort has concentrated on data archived at NSSDC in the 1970's, we have also recovered data and information that were never sent to NSSDC. These data, retrieved from various outside sources, include raw and reduced Gamma-Ray Spectrometer data from Apollos 15 and 16, information on the Apollo 17 Lunar Ejecta And Meteorites experiment, Dust Detector data from Apollos 11, 12, 14, and I5, raw telemetry tapes from the Apollo ALSEPs, and Weekly Status Reports for all the Apollo missions. These data are currently being read or organized, and supporting data is being gathered. We are still looking for the calibrated heat flow data from Apollos 15 and 17 for the period 1975-1977, any assistance or information on these data would be welcome. NSSDC has recently been tasked to release its hard-copy archive, comprising photography, microfilm, and microfiche. The details are still being discussed, but we are concentrating on recovering the valuable lunar data from these materials while they are still readily accessible. We have identified the most critical of these data and written a LASER proposal to fund their restoration. Included in this effort are data from the Apollo 15 and 16 Mass Spectrometers and the Apollo 17 Par-UV Spectrometer and ancillary information on the Apollo 17 Surface Electrical Properties Experiment

    Restoration of Apollo Data by the NSSDC and the PDS Lunar Data Node

    Get PDF
    The Lunar Data Node (LDN), under the auspices of the Geosciences Node of the Planetary Data System (PDS), is restoring Apollo data archived at the National Space Science Data Center. The Apollo data were arch ived on older media (7 -track tapes. microfilm, microfiche) and in ob solete digital formats, which limits use of the data. The LDN is maki ng these data accessible by restoring them to standard formats and archiving them through PDS. The restoration involves reading the older m edia, collecting supporting data (metadata), deciphering and understa nding the data, and organizing into a data set. The data undergo a pe er review before archive at PDS. We will give an update on last year' s work. We have scanned notebooks from Otto Berg, P.1. for the Lunar Ejecta and Meteorites Experiment. These notebooks contain information on the data and calibration coefficients which we hope to be able to use to restore the raw data into a usable archive. We have scanned Ap ollo 14 and 15 Dust Detector data from microfilm and are in the proce ss of archiving thc scans with PDS. We are also restoring raw dust de tector data from magnetic tape supplied by Yosio Nakamura (UT Austin) . Seiichi Nagihara (Texas Tech Univ.) and others in cooperation with NSSDC are recovering ARCSAV tapes (tapes containing raw data streams from all the ALSEP instruments). We will be preparing these data for archive with PDS. We are also in the process of recovering and archivi ng data not previously archived, from the Apollo 16 Gamma Ray Spectro meter and the Apollo 17 Infrared Spectrometer

    Restoration of Apollo Data by the Lunar Data Project/PDS Lunar Data Node: An Update

    Get PDF
    The Apollo 11, 12, and 14 through 17 missions orbited and landed on the Moon, carrying scientific instruments that returned data from all phases of the missions, included long-lived Apollo Lunar Surface Experiments Packages (ALSEPs) deployed by the astronauts on the lunar surface. Much of these data were never archived, and some of the archived data were on media and in formats that are outmoded, or were deposited with little or no useful documentation to aid outside users. This is particularly true of the ALSEP data returned autonomously for many years after the Apollo missions ended. The purpose of the Lunar Data Project and the Planetary Data System (PDS) Lunar Data Node is to take data collections already archived at the NASA Space Science Data Coordinated Archive (NSSDCA) and prepare them for archiving through PDS, and to locate lunar data that were never archived, bring them into NSSDCA, and then archive them through PDS. Preparing these data for archiving involves reading the data from the original media, be it magnetic tape, microfilm, microfiche, or hard-copy document, converting the outmoded, often binary, formats when necessary, putting them into a standard digital form accepted by PDS, collecting the necessary ancillary data and documentation (metadata) to ensure that the data are usable and well-described, summarizing the metadata in documentation to be included in the data set, adding other information such as references, mission and instrument descriptions, contact information, and related documentation, and packaging the results in a PDS-compliant data set. The data set is then validated and reviewed by a group of external scientists as part of the PDS final archive process. We present a status report on some of the data sets that we are processing

    History and Status of ALSEP and the Apollo Lunar Data Project

    Get PDF
    A suite of automated scientific instruments (the Apollo Lunar Surface Experiment Package, or ALSEP) was installed at each of the landing sites of Apollo 12, 14, 15, 16, and 17 from 1969 to 1972. They operated from deployment until decommissioning on 30 September 1977. These data were continuously transmitted to Earth and saved on the Range Tapes, which were recorded at the Manned Space Flight Network stations. These data were also broken out by experiment and sent to the experiment Principal Investigators on what were called the P.I. Tapes. Starting in April 1973 the Range Tape data were stored in digital format on 7-track magnetic tapes, the ARCSAV Tapes. In February 1976, the handling of the Range Tapes was transferred to UT Galveston. They produced 9-track tapes referred to as the Work Tapes. Following the Apollo program the Range and ARCSAV tapes, which were never archived, were lost. The Work Tapes were archived at the National Space Science Data Center (NSSDC). Some investigators archived their individual experiment data with NSSDC as well, but much of the data had minimal documentation, were not in digital form, or were stored in difficult to translate formats. Data from many experiments were never delivered to the NSSDC. The Lunar Data Project was started to address the problem of both missing and not readily usable data. Our effort has resulted in recovery of some of the ARCSAV tapes, recovery and digitization of a large volume of Apollo scientific and technical documentation, and restoration of many ALSEP and other Apollo data collections. Restoration involves deciphering formats, assembling necessary ancillary data (metadata), and packaging data in digital format to be archived with the Planetary Data System (PDS). Recovery of the data from the ARCSAV tapes involved having the tapes read on special equipment and extracting the individual experiment data out of the integrated data stream. We will report on the history and status of the various recovery efforts
    • …
    corecore