2,882 research outputs found
Modeling the galactic diffuse gamma-ray emission
The diffuse gamma-ray emission in our Galaxy is produced by highly energetic electrons interacting mainly with radiation fields through inverse Compton scattering or in interactions with interstellar matter through Bremsstrahlung. Furthermore, protons also interact with the interstellar matter and produce gamma-rays through the production of pion particles and their subsequent decay. The energy range of gamma-ray emission covers the domain from a few MeV (1 MeV = 106 eV) up to energies > 100 TeV (1 TeV = 1012 eV). In this work a model to predict the diffuse gamma-ray emission is presented. The general idea of this model is to simulate a population of galactic sources, which accelerate protons and electrons, distributed according to the populations of supernova remnants and pulsars at radio wavelengths. Through the previously mentioned interaction processes, the diffuse gamma-ray emission spectrum can be predicted for different regions of the Galaxy. The goal of this thesis is to produce the spectrum of diffuse gamma-ray emission for the two different regions of the Galaxy at l=344 longitude, b=0 latitude and at l=344 longitude, b=4 latitude
Cancer risk among patients with multiple sclerosis and their parents
Background: We investigated cancer risk among patients with multiple sclerosis (MS) and whether variation by age at MS diagnosis helps to elucidate mechanisms underlying the previously reported reduced cancer risk. We also studied cancer risk among parents to ascertain if MS susceptibility genes may confer protection against cancer in relatives. Methods: Cox proportional hazards regression, adjusted for age, sex, area, and socioeconomic index, estimated cancer risk among 20,276 patients with MS and 203,951 individuals without MS, using Swedish general population register data. Similar analyses were conducted among 11,284 fathers and 12,006 mothers of patients with MS, compared with 123,158 fathers and 129,409 mothers of controls. Results: With an average of 35 years of follow-up, there was a decreased overall cancer risk among patients with MS (hazard ratio = 0.91, 0.87-0.95). Increased risks were observed for brain tumors (1.44, 1.21-1.72) and urinary organ cancer (1.27, 1.05-1.53). Parents of patients with MS did not have a notably increased or decreased overall cancer risk. Conclusions: The reduction in cancer risk in patients with multiple sclerosis (MS) may result from behavioral change, treatment, or we speculate that some immunologic characteristics of MS disease activity improve antitumor surveillance. The lack of association among parents indicatesthat a simple inherited characteristic is unlikely to explain the reduced cancer risk among patients with MS. MS is associated with increased risk for some cancers, such as of urinary organs and brain tumors (although surveillance bias may be responsible). copyright © by AAN Enterprises, Inc
Mortality following a brain tumour diagnosis in patients with multiple sclerosis
Objectives: As brain tumours and their treatment may theoretically have a poorer prognosis in inflammatory central nervous system diseases such as multiple sclerosis (MS), all-cause mortality following a brain tumour diagnosis was compared between patients with and without MS. The potential role of age at tumour diagnosis was also examined. Setting: Hospital inpatients in Sweden with assessment of mortality in hospital or following discharge. Participants: Swedish national registers identified 20 543 patients with an MS diagnosis (1969-2005) and they were matched individually to produce a comparison cohort of 204 163 members of the general population without MS. Everyone with a primary brain tumour diagnosis was selected for this study: 111 with MS and 907 without MS. Primary and secondary outcome measures: 5-year mortality risk following brain tumour diagnosis and age at brain tumour diagnosis. Results: A non-statistically significant lower mortality risk among patients with MS (lower for those with tumours of high-grade and uncertain-grade malignancy and no notable difference for low-grade tumours) produced an unadjusted HR (and 95% CI) of 0.75 (0.56 to 1.02). After adjustment for age at diagnosis, grade of malignancy, sex, region of residence and socioeconomic index, the HR is 0.91 (0.67-1.24). The change in estimate was largely due to adjustment for age at brain tumour diagnosis, as patients with MS were on average 4.7 years younger at brain tumour diagnosis than those in the comparison cohort (p<0.001). Conclusions: Younger age at tumour diagnosis may contribute to mortality reduction in those with highgrade and uncertain-grade brain tumours. Survival following a brain tumour is not worse in patients with MS; even after age at brain tumour diagnosis and grade of malignancy are taken into account
Assessment techniques, database design and software facilities for thermodynamics and diffusion
The purpose of this article is to give a set of recommendations to producers of assessed thermodynamic data, who may be involved in either the critical evaluation of limited chemical systems or the creation and dissemination of larger thermodynamic databases. Also, it is hoped that reviewers and editors of scientific publications in this field will find some of the information useful. Good practice in the assessment process is essential, particularly as datasets from many different sources may be combined together into a single database. With this in mind, we highlight some problems that can arise during the assessment process and we propose a quality assurance procedure. It is worth mentioning at this point, that the provision of reliable assessed thermodynamic data relies heavily on the availability of high quality experimental information. The different software packages for thermodynamics and diffusion are described here only briefly
First-principles study of ternary fcc solution phases from special quasirandom structures
In the present work, ternary Special Quasirandom Structures (SQSs) for a fcc
solid solution phase are generated at different compositions,
and , ,
whose correlation functions are satisfactorily close to those of a random fcc
solution. The generated SQSs are used to calculate the mixing enthalpy of the
fcc phase in the Ca-Sr-Yb system. It is observed that first-principles
calculations of all the binary and ternary SQSs in the Ca-Sr-Yb system exhibit
very small local relaxation. It is concluded that the fcc ternary SQSs can
provide valuable information about the mixing behavior of the fcc ternary solid
solution phase. The SQSs presented in this work can be widely used to study the
behavior of ternary fcc solid solutions.Comment: 20 pages, 7 figure
Nonequilibrium thermodynamics versus model grain growth: derivation and some physical implications
Nonequilibrium thermodynamics formalism is proposed to derive the flux of
grainy (bubbles-containing) matter, emerging in a nucleation growth process.
Some power and non-power limits, due to the applied potential as well as owing
to basic correlations in such systems, have been discussed. Some encouragement
for such a discussion comes from the fact that the nucleation and growth
processes studied, and their kinetics, are frequently reported in literature as
self-similar (characteristic of algebraic correlations and laws) both in basic
entity (grain; bubble) size as well as time scales.Comment: 8 pages, 1 figur
Eutectic Colony Formation: A Stability Analysis
Experiments have widely shown that a steady-state lamellar eutectic
solidification front is destabilized on a scale much larger than the lamellar
spacing by the rejection of a dilute ternary impurity and forms two-phase cells
commonly referred to as `eutectic colonies'. We extend the stability analysis
of Datye and Langer for a binary eutectic to include the effect of a ternary
impurity. We find that the expressions for the critical onset velocity and
morphological instability wavelength are analogous to those for the classic
Mullins-Sekerka instability of a monophase planar interface, albeit with an
effective surface tension that depends on the geometry of the lamellar
interface and, non-trivially, on interlamellar diffusion. A qualitatively new
aspect of this instability is the occurence of oscillatory modes due to the
interplay between the destabilizing effect of the ternary impurity and the
dynamical feedback of the local change in lamellar spacing on the front motion.
In a transient regime, these modes lead to the formation of large scale
oscillatory microstructures for which there is recent experimental evidence in
a transparent organic system. Moreover, it is shown that the eutectic front
dynamics on a scale larger than the lamellar spacing can be formulated as an
effective monophase interface free boundary problem with a modified
Gibbs-Thomson condition that is coupled to a slow evolution equation for the
lamellar spacing. This formulation provides additional physical insights into
the nature of the instability and a simple means to calculate an approximate
stability spectrum. Finally, we investigate the influence of the ternary
impurity on a short wavelength oscillatory instability that is already present
at off-eutectic compositions in binary eutectics.Comment: 26 pages RevTex, 14 figures (28 EPS files); some minor changes;
references adde
Dynamics of Phase Transitions by Hysteresis Methods I
In studies of the QCD deconfining phase transition or crossover by means of
heavy ion experiments, one ought to be concerned about non-equilibrium effects
due to heating and cooling of the system. Motivated by this, we look at
hysteresis methods to study the dynamics of phase transitions. Our systems are
temperature driven through the phase transition using updating procedures in
the Glauber universality class. Hysteresis calculations are presented for a
number of observables, including the (internal) energy, properties of
Fortuin-Kasteleyn clusters and structure functions. We test the methods for 2d
Potts models, which provide a rich collection of phase transitions with a
number of rigorously known properties. Comparing with equilibrium
configurations we find a scenario where the dynamics of the transition leads to
a spinodal decomposition which dominates the statistical properties of the
configurations. One may expect an enhancement of low energy gluon production
due to spinodal decomposition of the Polyakov loops, if such a scenario is
realized by nature.Comment: 12 pages, revised after referee report, to appear in Phys. Rev.
- …
