6 research outputs found

    Machine Learning-Based Event Generator for Electron-Proton Scattering

    Get PDF
    We present a new machine learning-based Monte Carlo event generator using generative adversarial networks (GANs) that can be trained with calibrated detector simulations to construct a vertex-level event generator free of theoretical assumptions about femtometer scale physics. Our framework includes a GAN-based detector folding as a fast-surrogate model that mimics detector simulators. The framework is tested and validated on simulated inclusive deep-inelastic scattering data along with existing parametrizations for detector simulation, with uncertainty quantification based on a statistical bootstrapping technique. Our results provide for the first time a realistic proof of concept to mitigate theory bias in inferring vertex-level event distributions needed to reconstruct physical observables

    AI-based Monte Carlo event generator for electron-proton scattering

    Get PDF
    We present a new strategy using artificial intelligence (AI) to build the first AI-based Monte Carlo event generator (MCEG) capable of faithfully generating final state particle phase space in lepton-hadron scattering. We show a blueprint for integrating machine learning strategies with calibrated detector simulations to build a vertex-level, AI-based MCEG, free of theoretical assumptions about femtometer scale physics. As the first steps towards this goal, we present a case study for inclusive electron-proton scattering using synthetic data from the PYTHIA MCEG for testing and validation purposes. Our quantitative results validate our proof of concept and demonstrate the predictive power of the trained models. The work suggests new venues for data preservation to enable future QCD studies of hadrons structure, and the developed technology can boost the science output of physics programs at facilities such as Jefferson Lab and the future Electron-Ion Collider.Comment: 4 pages, 4 figures. arXiv admin note: text overlap with arXiv:2001.1110

    Chiral dynamics in the γ→p→pπ0 reaction

    Get PDF
    We investigate the neutral pion photoproduction on the proton near threshold in covariant chiral perturbation theory with the explicit inclusion of Δ degrees of freedom. This channel is specially sensitive to chiral dynamics and the advent of very precise data from the Mainz microtron has shown the limits of the convergence of the chiral series for both the heavy baryon and the covariant approaches. We show that the inclusion of the Δ resonance substantially improves the convergence leading to a good agreement with data for a wider range of energies

    Dynamics in near-threshold J / ψ photoproduction

    No full text
    2023 Descuentos SCOAPThe study of J/ψ photoproduction at low energies has consequences for the understanding of multiple aspects of nonperturbative QCD, ranging from mechanical properties of the proton to the binding inside nuclei and the existence of hidden-charm pentaquarks. Factorization of the photon-cc¯ and nucleon dynamics or vector meson dominance are often invoked to justify these studies. Alternatively, open-charm intermediate states have been proposed as the dominant mechanism underlying J/ψ photoproduction. As the latter violates this factorization, it is important to estimate the relevance of such contributions. We analyze the latest differential and integrated photoproduction cross sections from the GlueX and J/ψ-007 experiments. We show that the data can be adequately described by a small number of partial waves, which we parametrize with generic models enforcing low-energy unitarity. The results suggest a non-negligible contribution from open-charm intermediate states. Furthermore, most of the models present an elastic scattering length incompatible with previous extractions based on vector meson dominance and thus call into question its applicability to heavy mesons. Our results indicate a wide array of physics possibilities that are compatible with present data and need to be disentangled.U.S. Department of EnergyU.S. National Science FoundationMinisterio de Ciencia e Innovación (España)National Natural Science Foundation of ChinaDeutsche Forschungsgemeinschaft (DFG)Ministerio de Educación y Formación Profesional (España)Generalitat ValencianaNational Science Center (Poland)Depto. de Física TeóricaFac. de Ciencias FísicasInstituto de Física de Partículas y del Cosmos (IPARCOS)TRUEpu

    Strong QCD from Hadron Structure Experiments: Newport News, VA, USA, November 4-8, 2019

    No full text
    International audienceThe topical workshop Strong QCD from Hadron Structure Experiments took place at Jefferson Lab from November 6–9, 2019. Impressive progress in relating hadron structure observables to the strong QCD mechanisms has been achieved from the ab initio QCD description of hadron structure in a diverse array of methods in order to expose emergent phenomena via quasi-particle formation. The wealth of experimental data and the advances in hadron structure theory make it possible to gain insight into strong interaction dynamics in the regime of large quark–gluon coupling (the strong QCD regime), which will address the most challenging problems of the Standard Model on the nature of the dominant part of hadron mass, quark–gluon confinement, and the emergence of the ground and excited state hadrons, as well as atomic nuclei, from QCD. This workshop aimed to develop plans and to facilitate the future synergistic efforts between experimentalists, phenomenologists, and theorists working on studies of hadron spectroscopy and structure with the goal to connect the properties of hadrons and atomic nuclei available from data to the strong QCD dynamics underlying their emergence from QCD. These results pave the way for a future breakthrough extension in the studies of QCD with an Electron–Ion Collider in the U.S

    Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab

    No full text
    This document presents the initial scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab) to 22 GeV. It is the result of a community effort, incorporating insights from a series of workshops conducted between March 2022 and April 2023. With a track record of over 25 years in delivering the world's most intense and precise multi-GeV electron beams, CEBAF's potential for a higher energy upgrade presents a unique opportunity for an innovative nuclear physics program, which seamlessly integrates a rich historical background with a promising future. The proposed physics program encompass a diverse range of investigations centered around the nonperturbative dynamics inherent in hadron structure and the exploration of strongly interacting systems. It builds upon the exceptional capabilities of CEBAF in high-luminosity operations, the availability of existing or planned Hall equipment, and recent advancements in accelerator technology. The proposed program cover various scientific topics, including Hadron Spectroscopy, Partonic Structure and Spin, Hadronization and Transverse Momentum, Spatial Structure, Mechanical Properties, Form Factors and Emergent Hadron Mass, Hadron-Quark Transition, and Nuclear Dynamics at Extreme Conditions, as well as QCD Confinement and Fundamental Symmetries. Each topic highlights the key measurements achievable at a 22 GeV CEBAF accelerator. Furthermore, this document outlines the significant physics outcomes and unique aspects of these programs that distinguish them from other existing or planned facilities. In summary, this document provides an exciting rationale for the energy upgrade of CEBAF to 22 GeV, outlining the transformative scientific potential that lies within reach, and the remarkable opportunities it offers for advancing our understanding of hadron physics and related fundamental phenomena
    corecore