3,429 research outputs found

    Diffusion of multiple species with excluded-volume effects

    Get PDF
    Stochastic models of diffusion with excluded-volume effects are used to model many biological and physical systems at a discrete level. The average properties of the population may be described by a continuum model based on partial differential equations. In this paper we consider multiple interacting subpopulations/species and study how the inter-species competition emerges at the population level. Each individual is described as a finite-size hard core interacting particle undergoing Brownian motion. The link between the discrete stochastic equations of motion and the continuum model is considered systematically using the method of matched asymptotic expansions. The system for two species leads to a nonlinear cross-diffusion system for each subpopulation, which captures the enhancement of the effective diffusion rate due to excluded-volume interactions between particles of the same species, and the diminishment due to particles of the other species. This model can explain two alternative notions of the diffusion coefficient that are often confounded, namely collective diffusion and self-diffusion. Simulations of the discrete system show good agreement with the analytic results

    Propagators weakly associated to a family of Hamiltonians and the adiabatic theorem for the Landau Hamiltonian with a time-dependent Aharonov-Bohm flux

    Full text link
    We study the dynamics of a quantum particle moving in a plane under the influence of a constant magnetic field and driven by a slowly time-dependent singular flux tube through a puncture. The known adiabatic results do not cover these models as the Hamiltonian has time dependent domain. We give a meaning to the propagator and prove an adiabatic theorem. To this end we introduce and develop the new notion of a propagator weakly associated to a time-dependent Hamiltonian.Comment: Title and Abstract changed, will appear in Journal of Mathematical Physic

    Hydrogen peroxide as a signal controlling plant programmed cell death

    Get PDF
    Hydrogen peroxide (H2O2) has established itself as a key player in stress and programmed cell death responses, but little is known about the signaling pathways leading from H2O2 to programmed cell death in plants. Recently, identification of key regulatory mutants and near-full genome coverage microarray analysis of H2O2-induced cell death have begun to unravel the complexity of the H2O2 network. This review also describes a novel link between H2O2 and sphingolipids, two signals that can interplay and regulate plant cell death

    Psi-series solutions of the cubic H\'{e}non-Heiles system and their convergence

    Full text link
    The cubic H\'enon-Heiles system contains parameters, for most values of which, the system is not integrable. In such parameter regimes, the general solution is expressible in formal expansions about arbitrary movable branch points, the so-called psi-series expansions. In this paper, the convergence of known, as well as new, psi-series solutions on real time intervals is proved, thereby establishing that the formal solutions are actual solutions

    On a certain class of semigroups of operators

    Full text link
    We define an interesting class of semigroups of operators in Banach spaces, namely, the randomly generated semigroups. This class contains as a remarkable subclass a special type of quantum dynamical semigroups introduced by Kossakowski in the early 1970s. Each randomly generated semigroup is associated, in a natural way, with a pair formed by a representation or an antirepresentation of a locally compact group in a Banach space and by a convolution semigroup of probability measures on this group. Examples of randomly generated semigroups having important applications in physics are briefly illustrated.Comment: 11 page

    Biased Brownian motion in extreme corrugated tubes

    Full text link
    Biased Brownian motion of point-size particles in a three-dimensional tube with smoothly varying cross-section is investigated. In the fashion of our recent work [Martens et al., PRE 83,051135] we employ an asymptotic analysis to the stationary probability density in a geometric parameter of the tube geometry. We demonstrate that the leading order term is equivalent to the Fick-Jacobs approximation. Expression for the higher order corrections to the probability density are derived. Using this expansion orders we obtain that in the diffusion dominated regime the average particle current equals the zeroth-order Fick-Jacobs result corrected by a factor including the corrugation of the tube geometry. In particular we demonstrate that this estimate is more accurate for extreme corrugated geometries compared to the common applied method using the spatially dependent diffusion coefficient D(x,f). The analytic findings are corroborated with the finite element calculation of a sinusoidal-shaped tube.Comment: 10 pages, 4 figure

    Entropic Stochastic Resonance

    Get PDF
    We present a novel scheme for the appearance of Stochastic Resonance when the dynamics of a Brownian particle takes place in a confined medium. The presence of uneven boundaries, giving rise to an entropic contribution to the potential, may upon application of a periodic driving force result in an increase of the spectral amplification at an optimum value of the ambient noise level. This Entropic Stochastic Resonance (ESR), characteristic of small-scale systems, may constitute a useful mechanism for the manipulation and control of single-molecules and nano-devices.Comment: 4 pages, 3 figure
    • …
    corecore