395 research outputs found

    Is there a role for menopausal hormone therapy in the management of postmenopausal osteoporosis?

    Get PDF
    We provide an evidence base and guidance for the use of menopausal hormone therapy (MHT) for the maintenance of skeletal health and prevention of future fractures in recently menopausal women. Despite controversy over associated side effects, which has limited its use in recent decades, the potential role for MHT soon after menopause in the management of postmenopausal osteoporosis is increasingly recognized. We present a narrative review of the benefits versus risks of using MHT in the management of postmenopausal osteoporosis. Current literature suggests robust anti-fracture efficacy of MHT in patients unselected for low BMD, regardless of concomitant use with progestogens, but with limited evidence of persisting skeletal benefits following cessation of therapy. Side effects include cardiovascular events, thromboembolic disease, stroke and breast cancer, but the benefit-risk profile differs according to the use of opposed versus unopposed oestrogens, type of oestrogen/progestogen, dose and route of delivery and, for cardiovascular events, timing of MHT use. Overall, the benefit-risk profile supports MHT treatment in women who have recently (< 10 years) become menopausal, who have menopausal symptoms and who are less than 60 years old, with a low baseline risk for adverse events. MHT should be considered as an option for the maintenance of skeletal health in women, specifically as an additional benefit in the context of treatment of menopausal symptoms, when commenced at the menopause, or shortly thereafter, in the context of a personalized benefit-risk evaluation

    Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance

    Get PDF
    The new generation of gravitational waves detectors require unprecedented levels of isolation from seismic noise. This article reviews the seismic isolation strategy and instrumentation developed for the Advanced LIGO observatories. It summarizes over a decade of research on active inertial isolation and shows the performance recently achieved at the Advanced LIGO observatories. The paper emphasizes the scientific and technical challenges of this endeavor and how they have been addressed. An overview of the isolation strategy is given. It combines multiple layers of passive and active inertial isolation to provide suitable rejection of seismic noise at all frequencies. A detailed presentation of the three active platforms that have been developed is given. They are the hydraulic pre-isolator, the single-stage internal isolator and the two-stage internal isolator. The architecture, instrumentation, control scheme and isolation results are presented for each of the three systems. Results show that the seismic isolation sub-system meets Advanced LIGO\u27s stringent requirements and robustly supports the operation of the two detectors

    Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform. Part 2: Experimental investigation and tests results

    Get PDF
    This paper presents the results of the past seven years of experimental investigation and testing done on the two-stage twelve-axis vibration isolation platform for Advanced LIGO gravity waves observatories. This five-ton two-and-half-meter wide system supports more than a 1000 kg of very sensitive equipment. It provides positioning capability and seismic isolation in all directions of translation and rotation. To meet the very stringent requirements of Advanced LIGO, the system must provide more than three orders of magnitude of isolation over a very large bandwidth. It must bring the motion below 10-11 m/Hz at 1 Hz and 10-12 m/Hz at 10 Hz. A prototype of this system has been built in 2006. It has been extensively tested and analyzed during the following two years. This paper shows how the experimental results obtained with the prototype were used to engineer the final design. It highlights how the engineering solutions implemented not only improved the isolation performance but also greatly simplified the assembly, testing, and commissioning process. During the past two years, five units have been constructed, tested, installed and commissioned at each of the two LIGO observatories. Five other units are being built for an upcoming third observatory. The test results presented show that the system meets the motion requirements, and reach the sensor noise in the control bandwidth

    On-line electrochemistry–bioaffinity screening with parallel HR-LC-MS for the generation and characterization of modified p38α kinase inhibitors

    Get PDF
    In this study, an integrated approach is developed for the formation, identification and biological characterization of electrochemical conversion products of p38α mitogen-activated protein kinase inhibitors. This work demonstrates the hyphenation of an electrochemical reaction cell with a continuous-flow bioaffinity assay and parallel LC-HR-MS. Competition of the formed products with a tracer (SKF-86002) that shows fluorescence enhancement in the orthosteric binding site of the p38α kinase is the readout for bioaffinity. Parallel HR-MSn experiments provided information on the identity of binders and non-binders. Finally, the data produced with this on-line system were compared to electrochemical conversion products generated off-line. The electrochemical conversion of 1-{6-chloro-5-[(2R,5S)-4-(4-fluorobenzyl)-2,5-dimethylpiperazine-1-carbonyl]-3aH-indol-3-yl}-2-morpholinoethane-1,2-dione resulted in eight products, three of which showed bioaffinity in the continuous-flow p38α bioaffinity assay used. Electrochemical conversion of BIRB796 resulted, amongst others, in the formation of the reactive quinoneimine structure and its corresponding hydroquinone. Both products were detected in the p38α bioaffinity assay, which indicates binding to the p38α kinase

    Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform. Part 1: Design and production overview

    Get PDF
    New generations of gravity wave detectors require unprecedented levels of vibration isolation. This paper presents the final design of the vibration isolation and positioning platform used in Advanced LIGO to support the interferometer\u27s core optics. This five-ton two-and-half-m wide system operating in ultra-high vacuum. It features two stages of isolation mounted in series. The stages are imbricated to reduce the overall height. Each stage provides isolation in all directions of translation and rotation. The system is instrumented with a unique combination of low noise relative and inertial sensors. The active control provides isolation from 0.1 Hz to 30 Hz. It brings the platform motion down to 10-11m/√Hz at 1 Hz. Active and passive isolation combine to bring the platform motion below 10-12m/√Hz at 10 Hz. The passive isolation lowers the motion below 10-13m/√Hz at 100 Hz. The paper describes how the platform has been engineered not only to meet the isolation requirements, but also to permit the construction, testing, and commissioning process of the fifteen units needed for Advanced LIGO observatories

    Altered striatal endocannabinoid signaling in a transgenic mouse model of spinocerebellar ataxia type-3

    Get PDF
    Spinocerebellar ataxia type-3 (SCA-3) is the most prevalent autosomal dominant inherited ataxia. We recently found that the endocannabinoid system is altered in the post-mortem cerebellum of SCA-3 patients, and similar results were also found in the cerebellar and brainstem nuclei of a SCA-3 transgenic mouse model. Given that the neuropathology of SCA-3 is not restricted to these two brain regions but rather, it is also evident in other structures (e.g., the basal ganglia), we studied the possible changes to endocannabinoid signaling in the striatum of these transgenic mice. SCA-3 mutant mice suffer defects in motor coordination, balance and they have an abnormal gait, reflecting a cerebellar/brainstem neuropathology. However, they also show dystonia-like behavior (limb clasping) that may be related to the malfunction/deterioration of specific neurons in the striatum. Indeed, we found a loss of striatal projecting neurons in SCA-3 mutant mice, accompanied by a reduction in glial glutamate transporters that could potentially aggravate excitotoxic damage. In terms of endocannabinoid signaling, no changes in CB2 receptors were evident, yet an important reduction in CB1 receptors was detected by qPCR and immunostaining. The reduction in CB1 receptors was presumed to occur in striatal afferent and efferent neurons, also potentially aggravating excitotoxicity. We also measured the endocannabinoid lipids in the striatum and despite a marked increase in the FAAH enzyme in this area, no overall changes in these lipids were found. Collectively, these studies confirm that the striatal endocannabinoid system is altered in SCA-3 mutant mice, adding to the equivalent changes found in other strongly affected CNS structures in this type of ataxia (i.e.: the cerebellum and brainstem). These data open the way to search for drugs that might correct these changes.Funding: This study has been supported: (i) by MICINN (SAF2009-11847 and SAF2015-68580-C2-1-R), CIBERNED (CB06/05/0089) and “Fundación Eugenio Rodríguez Pascual”, to JFR; (ii) by the Research and Education Component of the Advancing a Healthier Wisconsin Endowment at the Medical College of Wisconsin, to CJH; and (iii) by Fundação para a Ciência e Tecnologia through the project POCI-01-0145-FEDER-016818 (PTDC/NEU-NMC/3648/2014) and co-financed by the Portuguese North Regional Operational Program (ON.2 – O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), to PM. Carmen Rodríguez-Cueto was a predoctoral fellow supported by FPI Program-Ministry of Science. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    HPV infection and number of lifetime sexual partners are strong predictors for ‘natural’ regression of CIN 2 and 3

    Get PDF
    The aim of this paper was to evaluate the factors that predict regression of untreated CIN 2 and 3. A total of 93 patients with colposcopic persistent CIN 2 and 3 lesions after biopsy were followed for 6 months. Human papillomavirus (HPV) types were determined by polymerase chain reaction at enrolment. We analysed the biologic and demographic predictors of natural regression using univariate and multivariate methods. The overall regression rate was 52% (48 out of 93), including 58% (22 out of 38) of CIN 2 and 47% (26 out of 55) of CIN 3 lesions (P=0.31 for difference). Human papillomavirus was detected in 84% (78 out of 93) of patients. In univariate analysis, 80% (12 out of 15) of lesions without HPV regressed compared to 46% (36 out of 78) of lesions with HPV infection (P=0.016). Women without HPV and those who had a resolution of HPV had a four-fold higher chance of regression than those with persistent HPV (relative odds=3.5, 95% CI=1.4-8.6). Women with five or fewer lifetime sexual partners had higher rates of regression than women with more than five partners (P=0.003). In multivariate analysis, HPV status and number of sexual partners remained as significant independent predictors of regression. In conclusion, HPV status and number of lifetime sexual partners were strongly predictive of regression of untreated CIN 2 and 3

    Skin Vaccination against Cervical Cancer Associated Human Papillomavirus with a Novel Micro-Projection Array in a Mouse Model

    Get PDF
    Background: Better delivery systems are needed for routinely used vaccines, to improve vaccine uptake. Many vaccines contain alum or alum based adjuvants. Here we investigate a novel dry-coated densely-packed micro-projection array skin patch (Nanopatch (TM)) as an alternate delivery system to intramuscular injection for delivering an alum adjuvanted human papillomavirus (HPV) vaccine (Gardasil (R)) commonly used as a prophylactic vaccine against cervical cancer

    Cannabinoid Receptor 2 Signaling Does Not Modulate Atherogenesis in Mice

    Get PDF
    BACKGROUND:Strong evidence supports a protective role of the cannabinoid receptor 2 (CB(2)) in inflammation and atherosclerosis. However, direct proof of its involvement in lesion formation is lacking. Therefore, the present study aimed to characterize the role of the CB(2) receptor in Murine atherogenesis. METHODS AND FINDINGS:Low density lipoprotein receptor-deficient (LDLR(-/-)) mice subjected to intraperitoneal injections of the selective CB(2) receptor agonist JWH-133 or vehicle three times per week consumed high cholesterol diet (HCD) for 16 weeks. Surprisingly, intimal lesion size did not differ between both groups in sections of the aortic roots and arches, suggesting that CB(2) activation does not modulate atherogenesis in vivo. Plaque content of lipids, macrophages, smooth muscle cells, T cells, and collagen were also similar between both groups. Moreover, CB(2) (-/-)/LDLR(-/-) mice developed lesions of similar size containing more macrophages and lipids but similar amounts of smooth muscle cells and collagen fibers compared with CB(2) (+/+)/LDLR(-/-) controls. While JWH-133 treatment reduced intraperitoneal macrophage accumulation in thioglycollate-elicited peritonitis, neither genetic deficiency nor pharmacologic activation of the CB(2) receptor altered inflammatory cytokine expression in vivo or inflammatory cell adhesion in the flow chamber in vitro. CONCLUSION:Our study demonstrates that both activation and deletion of the CB(2) receptor do not relevantly modulate atherogenesis in mice. Our data do not challenge the multiple reports involving CB(2) in other inflammatory processes. However, in the context of atherosclerosis, CB(2) does not appear to be a suitable therapeutic target for reduction of the atherosclerotic plaque
    corecore