1,584 research outputs found

    Evolution of growth traits in invasive Pereskia aculeata (Cactaceae): testing the EICA hypothesis using its specialist herbivore, Catorhintha schaffneri (Coreidae)

    Get PDF
    BACKGROUND Species introduced into new habitats are fitter than their native populations, as hypothesized by the ‘evolution of increased competitive ability’ (EICA). Here, Pereskia aculeata Miller was used as a model to test EICA and explore how ‘enemy release’ may have influenced the invasion success of its 400‐year‐old introduced populations (genotypes) compared with native populations. Plant growth traits (height and shoot length) of 15 genotypes [four from the introduced range (South Africa) and 11 from the native range (Brazil and Argentina, Venezuela and The Dominican Republic)] were assessed. Damage and impact of a shoot‐feeding, sap‐sucking specialist Catorhintha schaffneri Brailovsky & Garcia on ten genotypes were also compared. RESULTS All but one of the invasive genotypes were significantly taller than native genotypes. Although the invasive genotypes were relatively more damaged by herbivory than some of the native genotypes, the observed differences were not explained completely by their origins. Nonetheless, the findings partially supported the predictions of the EICA hypothesis because invasive genotypes were generally taller than native genotypes, but did not fully support the hypothesis because they were not always more damaged than the native genotypes by C. schaffneri. CONCLUSION Invasive genotypes had an advantage in the introduced range as they can climb neighbouring vegetation more quickly than native genotypes, but the damage incurred by the invasive genotypes relative to the native genotypes suggests only that C. schaffneri would be as damaging in South Africa, where it serves as a biocontrol agent, as it is in its native distribution in Brazil

    Two in one: cryptic species discovered in biological control agent populations using molecular data and crossbreeding experiments

    Get PDF
    There are many examples of cryptic species that have been identified through DNA-barcoding or other genetic techniques. There are, however, very few confirmations of cryptic species being reproductively isolated. This study presents one of the few cases of cryptic species that has been confirmed to be reproductively isolated and therefore true species according to the biological species concept. The cryptic species are of special interest because they were discovered within biological control agent populations. Two geographically isolated populations of Eccritotarsus catarinensis (Carvalho) [Hemiptera: Miridae], a biological control agent for the invasive aquatic macrophyte, water hyacinth, Eichhornia crassipes (Mart.) Solms [Pontederiaceae], in South Africa, were sampled from the native range of the species in South America. Morphological characteristics indicated that both populations were the same species according to the current taxonomy, but subsequent DNA analysis and breeding experiments revealed that the two populations are reproductively isolated. Crossbreeding experiments resulted in very few hybrid offspring when individuals were forced to interbreed with individuals of the other population, and no hybrid offspring were recorded when a choice of mate from either population was offered. The data indicate that the two populations are cryptic species that are reproductively incompatible. Subtle but reliable diagnostic characteristics were then identified to distinguish between the two species which would have been considered intraspecific variation without the data from the genetics and interbreeding experiments. These findings suggest that all consignments of biological control agents from allopatric populations should be screened for cryptic species using genetic techniques and that the importation of multiple consignments of the same species for biological control should be conducted with caution

    The UK needs an open data portal dedicated to coastal flood and erosion hazard risk and resilience

    Get PDF
    In the UK, coastal flooding and erosion are two of the primary climate-related hazards to communities, businesses, and infrastructure. To better address the ramifications of those hazards, now and into the future, the UK needs to transform its scattered, fragmented coastal data resources into a systematic, integrated portal for quality-assured, publicly accessible open data. Such a portal would support analyses of coastal risk and resilience by hosting, in addition to data layers for coastal flooding and erosion, a diverse array of spatial datasets for building footprints, infrastructure networks, land use, population, and various socio-economic measures and indicators derived from survey and census data. The portal would facilitate novel combinations of spatial data layers to yield scientifically, societally, and economically beneficial insights into UK coastal systems

    High-throughput UHPLC/MS/MS-based metabolic profiling using a vacuum jacketed column

    Get PDF
    In UHPLC, frictional heating from the eluent flowing through the column at pressures of ca. 10–15 Kpsi causes radial diffusion via temperature differences between the center of the column and its walls. Longitudinal dispersion also occurs due to temperature gradients between the inlet and outlet. These effects cause band broadening but can be mitigated via a combination of vacuum jacketed stainless steel tubing, reduced column end nut mass, and a constant temperature in the column from heating the inlet fitting. Here, vacuum jacketed column (VJC) technology, employing a novel column housing located on the source of the mass spectrometer and minimized tubing from the column outlet to the electrospray probe, was applied to profiling metabolites in urine. For a 75 s reversed-phase gradient separation, the average peak widths for endogenous compounds in urine were 1.2 and 0.6 s for conventional LC/MS and VJC systems, respectively. The peak tailing factor was reduced from 1.25 to 1.13 when using the VJC system compared to conventional UHPLC, and the peak capacity increased from 65 to 120, with a 25% increase in features detected in urine. The increased resolving power of the VJC system reduced co-elution, simplifying MS and MS/MS spectra, providing a more confident metabolite identification. The increased LC performance also gave more intense MS peaks, with a 10–120% increase in response, improving the quality of the MS data and detection limits. Reducing the LC gradient duration to 37 s gave peak widths of ca. 0.4 s and a peak capacity of 84

    High throughput UHPLC-MS-based lipidomics using vacuum jacketed columns

    Get PDF
    Reversed-phase UHPLC-MS is extensively employed for both the profiling of biological fluids and tissues to characterize lipid dysregulation in disease and toxicological studies. With conventional LC-MS systems the chromatographic performance and throughput are limited due to dispersion from the fluidic connections as well as radial and longitudinal thermal gradients in the LC column. In this study vacuum jacketed columns (VJC), positioned at the source of the mass spectrometer, were applied to the lipidomic analysis of plasma extracts. Compared to conventional UHPLC, the VJC-based methods offered greater resolution, faster analysis, and improved peak intensity. For a 5 min VJC analysis, the peak capacity increased by 66%, peak tailing reduced by up to 34%, and the number of lipids detected increased by 30% compared to conventional UHPLC. The narrower peaks, and thus increased resolution, compared to the conventional system resulted in a 2-fold increase in peak intensity as well a significant improvement in MS and MS/MS spectral quality resulting in a 22% increase in the number of lipids identified. When applied to mouse plasma samples, reproducibility of the lipid intensities in the pooled QC ranged from 1.8–12%, with no related drift in tR observed

    A Parsimonious Approach to Modeling Animal Movement Data

    Get PDF
    Animal tracking is a growing field in ecology and previous work has shown that simple speed filtering of tracking data is not sufficient and that improvement of tracking location estimates are possible. To date, this has required methods that are complicated and often time-consuming (state-space models), resulting in limited application of this technique and the potential for analysis errors due to poor understanding of the fundamental framework behind the approach. We describe and test an alternative and intuitive approach consisting of bootstrapping random walks biased by forward particles. The model uses recorded data accuracy estimates, and can assimilate other sources of data such as sea-surface temperature, bathymetry and/or physical boundaries. We tested our model using ARGOS and geolocation tracks of elephant seals that also carried GPS tags in addition to PTTs, enabling true validation. Among pinnipeds, elephant seals are extreme divers that spend little time at the surface, which considerably impact the quality of both ARGOS and light-based geolocation tracks. Despite such low overall quality tracks, our model provided location estimates within 4.0, 5.5 and 12.0 km of true location 50% of the time, and within 9, 10.5 and 20.0 km 90% of the time, for above, equal or below average elephant seal ARGOS track qualities, respectively. With geolocation data, 50% of errors were less than 104.8 km (<0.94°), and 90% were less than 199.8 km (<1.80°). Larger errors were due to lack of sea-surface temperature gradients. In addition we show that our model is flexible enough to solve the obstacle avoidance problem by assimilating high resolution coastline data. This reduced the number of invalid on-land location by almost an order of magnitude. The method is intuitive, flexible and efficient, promising extensive utilization in future research

    The Cosmic Microwave Background and Particle Physics

    Get PDF
    In forthcoming years, connections between cosmology and particle physics will be made increasingly important with the advent of a new generation of cosmic microwave background (CMB) experiments. Here, we review a number of these links. Our primary focus is on new CMB tests of inflation. We explain how the inflationary predictions for the geometry of the Universe and primordial density perturbations will be tested by CMB temperature fluctuations, and how the gravitational waves predicted by inflation can be pursued with the CMB polarization. The CMB signatures of topological defects and primordial magnetic fields from cosmological phase transitions are also discussed. Furthermore, we review current and future CMB constraints on various types of dark matter (e.g. massive neutrinos, weakly interacting massive particles, axions, vacuum energy), decaying particles, the baryon asymmetry of the Universe, ultra-high-energy cosmic rays, exotic cosmological topologies, and other new physics.Comment: 43 pages. To appear in Annual Reviews of Nuclear and Particle Scienc

    TME quality in rectal cancer surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The concept of total mesorectal excision has revolutionised rectal cancer surgery. TME reduces the rate of local recurrence and tumour associated mortality. However, in clinical trials only 50% of the removed rectal tumours have an optimal TME quality. Patients: During a period of 36 months we performed 103 rectal resections. The majority of patients (76%; 78/103) received an anterior resection. The remaining patients underwent either abdominoperineal resection (16%; 17/103), Hartmann's procedure (6%; 6/103) or colectomy (2%; 2/103).</p> <p>Results</p> <p>In 90% (93/103) TME quality control could be performed. 99% (92/93) of resected tumours had optimal TME quality. In 1% (1/93) the mesorectum was nearly complete. None of the removed tumours had an incomplete mesorectum. In 98% (91/93) the circumferential resection margin was negative. Major surgical complications occurred in 17% (18/103). 5% (4/78) of patients with anterior resection had anastomotic leakage. 17% (17/103) developed wound infections. Mortality after elective surgery was 4% (4/95).</p> <p>Conclusion</p> <p>Optimal TME quality results can be achieved in all stages of rectal cancer with a rate of morbidity and mortality comparable to the results from the literature. Future studies should evaluate outcome and local recurrence in accordance to the degree of TME quality.</p

    Geo-environmental mapping using physiographic analysis: constraints on the evaluation of land instability and groundwater pollution hazards in the Metropolitan District of Campinas, Brazil

    No full text
    Geo-environmental terrain assessments and territorial zoning are useful tools for the formulation and implementation of environmental management instruments (including policy-making, planning, and enforcement of statutory regulations). They usually involve a set of procedures and techniques for delimitation, characterisation and classification of terrain units. However, terrain assessments and zoning exercises are often costly and time-consuming, particularly when encompassing large areas, which in many cases prevent local agencies in developing countries from properly benefiting from such assessments. In the present paper, a low-cost technique based on the analysis of texture of satellite imagery was used for delimitation of terrain units. The delimited units were further analysed in two test areas situated in Southeast Brazil to provide estimates of land instability and the vulnerability of groundwater to pollution hazards. The implementation incorporated procedures for inferring the influences and potential implications of tectonic fractures and other discontinuities on ground behaviour and local groundwater flow. Terrain attributes such as degree of fracturing, bedrock lithology and weathered materials were explored as indicators of ground properties. The paper also discusses constraints on- and limitations of- the approaches taken
    corecore