2,122 research outputs found

    The Australian Early Development Index (AEDI)

    Get PDF

    Validation of the German version of the STarT-Back Tool (STarT-G): a cohort study with patients from primary care practices

    Get PDF
    Background: Current research emphasizes the high prevalence and costs of low back pain (LBP). The STarT Back Tool was designed to support primary care decision making for treatment by helping to determine the treatment prognosis of patients with non-specific low back pain. The German version is the STarT-G. The cross-cultural translation of the tool followed a structured and widely accepted process but to date it was only partially validated with a small sample. The aim of the study was to test the psychometric properties construct validity, discriminative ability, internal consistency and test-retest-reliability of the STarT-G and to compare them with values given for the original English version. Methods: A consecutive cohort study with a two-week retest was conducted among patients with non-specific LBP, aged 18 to 60 years, from primary care practices. Questionnaires were collected before the first consultation, and two weeks later by post, using the following reference standards: the Roland and Morris disability questionnaire, the Tampa Scale of Kinesiophobia, the Pain Catastrophizing Scale and the Hospital Anxiety and Depression Scale. Psychometric properties examined included the tool’s discriminative abilities, whether the psychosocial subscale was one factor, internal consistency, item redundancy, test-retest reliability and floor and ceiling effects. Results: There were 228 patients recruited with a mean age of 42.2 (SD 11.0) years, and 53 % were female. The areas under the curve (AUC) for discriminative ability ranged from 0.70 (STarT-G Subscale - Pain Catastrophizing Scale; CI95 0.63, 0.78) to 0.77 (STarT-G Total - Composite reference standard, CI95 0.60, 0.94). Factor loadings ranged from 0.49 to 0.74. Cronbach’s alpha testing the internal consistency and redundancy for the total/subscale scores were α = 0.52/0.55 respectively. The STarT-G test-retest reliability Kappa values for the total/subscale scores were 0.67/0.68 respectively. No floor or ceiling effects were present. Conclusions: The STarT-G shows acceptable psychometric properties although not in exact agreement with the original English version. The items previously regarded as a psychosocial subscale may be better seen as an index of different individual psychosocial constructs. The relevance of using the tool at the point of consultation should be further examined

    A surface code quantum computer in silicon

    Get PDF
    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited

    Risk assessment of war wrecks – a comprehensive approach investigating four wrecks containing munitions in the German Bight/North Sea

    Get PDF
    Shipwrecks and dumped munition continue to be a major hazard, both in the North Sea but also on a global scale. Research within the EU Interreg project North Sea Wrecks (NSW), in cooperation with the German Aerospace Centre, Institute for the Protection of Maritime Infrastructures (DLR), is generating new insights into the status of wrecks, the potential leakage of pollutants from remaining munitions loads and the effects of contamination on exposed marine organisms in the North Sea environment. Further, historical documents are generated from archives to describe ship’s history and sinking scenario. These historical findings were compared to models and images of the visual inspections of the wrecks. Further, samples of water, sediment and organisms are being analysed for traces of explosives. Combining the results of these different fields of research allows for a better understanding of the environmental risks deriving from these wrecks. This process is shown below by focusing on the wreck of the German light cruiser SMS MAINZ, which sank in 1914. Data were compared to three additional wrecks situated also within the southern German Bight. Available data about the wrecks were preliminary assessed using a wreck risk model. Finally, wrecks were ranked according to their potential environmental risk

    Anisotropic surface reaction limited phase transformation dynamics in LiFePO4

    Full text link
    A general continuum theory is developed for ion intercalation dynamics in a single crystal of a rechargeable battery cathode. It is based on an existing phase-field formulation of the bulk free energy and incorporates two crucial effects: (i) anisotropic ionic mobility in the crystal and (ii) surface reactions governing the flux of ions across the electrode/electrolyte interface, depending on the local free energy difference. Although the phase boundary can form a classical diffusive "shrinking core" when the dynamics is bulk-transport-limited, the theory also predicts a new regime of surface-reaction-limited (SRL) dynamics, where the phase boundary extends from surface to surface along planes of fast ionic diffusion, consistent with recent experiments on LiFePO4. In the SRL regime, the theory produces a fundamentally new equation for phase transformation dynamics, which admits traveling-wave solutions. Rather than forming a shrinking core of untransformed material, the phase boundary advances by filling (or emptying) successive channels of fast diffusion in the crystal. By considering the random nucleation of SRL phase-transformation waves, the theory predicts a very different picture of charge/discharge dynamics from the classical diffusion-limited model, which could affect the interpretation of experimental data for LiFePO4.Comment: 15 pages, 10 figure

    Use of a Multiplex Transcript Method for Analysis of Pseudomonas Aeruginosa Gene Expression Profiles in the Cystic Fibrosis Lung

    Get PDF
    The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic fibrosis (CF) will be advanced by an improved understanding of P. aeruginosa behavior in vivo We demonstrate the use of multiplexed Nanostring technology to monitor relative abundances of P. aeruginosa transcripts across clinical isolates, in serial samples, and for the purposes of comparing microbial physiology in vitro and in vivo The expression of 75 transcripts encoded by genes implicated in CF lung disease was measured in a variety of P. aeruginosa strains as well as RNA serial sputum samples from four P. aeruginosa-colonized subjects with CF collected over 6 months. We present data on reproducibility, the results from different methods of normalization, and demonstrate high concordance between transcript relative abundance data obtained by Nanostring or transcriptome sequencing (RNA-Seq) analysis. Furthermore, we address considerations regarding sequence variation between strains during probe design. Analysis of P. aeruginosa grown in vitro identified transcripts that correlated with the different phenotypes commonly observed in CF clinical isolates. P. aeruginosa transcript profiles in RNA from CF sputum indicated alginate production in vivo, and transcripts involved in quorum-sensing regulation were less abundant in sputum than strains grown in the laboratory. P. aeruginosa gene expression patterns from sputum clustered closely together relative to patterns for laboratory-grown cultures; in contrast, laboratory-grown P. aeruginosa showed much greater transcriptional variation with only loose clustering of strains with different phenotypes. The clustering within and between subjects was surprising in light of differences in inhaled antibiotic and respiratory symptoms, suggesting that the pathways represented by these 75 transcripts are stable in chronic CF P. aeruginosa lung infections

    Optimizing single-mode collection from pointlike sources of single photons with adaptive optics

    Get PDF
    Army Research Office MURI on Hybrid Quantum Interactions Program W911NF09104.The collection efficiency of light from a point-like emitter may be extremely poor due to aberrations induced by collection optics and the emission distribution of the source. Analyzing the aberrant wavefront (e.g., with a Shack-Hartmann sensor) and correcting accordingly can be infeasible on the single-photon level. We present a technique that uses a genetic algorithm to control a deformable mirror for correcting wavefront aberrations in single-photon signals from point emitters. We apply our technique to both a simulated point source and a real InAs quantum dot, achieving coupling increases of up to 50x00025; and automatic reduction of system drift.PostprintPeer reviewe

    What does heritability of Alzheimer's disease represent?

    Get PDF
    INTRODUCTION: Both late-onset Alzheimer's disease (AD) and ageing have a strong genetic component. In each case, many associated variants have been discovered, but how much missing heritability remains to be discovered is debated. Variability in the estimation of SNP-based heritability could explain the differences in reported heritability. METHODS: We compute heritability in five large independent cohorts (N = 7,396, 1,566, 803, 12,528 and 3,963) to determine whether a consensus for the AD heritability estimate can be reached. These cohorts vary by sample size, age of cases and controls and phenotype definition. We compute heritability a) for all SNPs, b) excluding APOE region, c) excluding both APOE and genome-wide association study hit regions, and d) SNPs overlapping a microglia gene-set. RESULTS: SNP-based heritability of late onset Alzheimer's disease is between 38 and 66% when age and genetic disease architecture are correctly accounted for. The heritability estimates decrease by 12% [SD = 8%] on average when the APOE region is excluded and an additional 1% [SD = 3%] when genome-wide significant regions were removed. A microglia gene-set explains 69-84% of our estimates of SNP-based heritability using only 3% of total SNPs in all cohorts. CONCLUSION: The heritability of neurodegenerative disorders cannot be represented as a single number, because it is dependent on the ages of cases and controls. Genome-wide association studies pick up a large proportion of total AD heritability when age and genetic architecture are correctly accounted for. Around 13% of SNP-based heritability can be explained by known genetic loci and the remaining heritability likely resides around microglial related genes
    • …
    corecore