4,285 research outputs found

    The Limits of Individual Identification from Sample Allele Frequencies: Theory and Statistical Analysis

    Get PDF
    It was shown recently using experimental data that it is possible under certain conditions to determine whether a person with known genotypes at a number of markers was part of a sample from which only allele frequencies are known. Using population genetic and statistical theory, we show that the power of such identification is, approximately, proportional to the number of independent SNPs divided by the size of the sample from which the allele frequencies are available. We quantify the limits of identification and propose likelihood and regression analysis methods for the analysis of data. We show that these methods have similar statistical properties and have more desirable properties, in terms of type-I error rate and statistical power, than test statistics suggested in the literature

    Continuous cough monitoring using ambient sound recording during convalescence from a COPD exacerbation

    Get PDF
    Purpose Cough is common in chronic obstructive pulmonary disease (COPD) and is associated with frequent exacerbations and increased mortality. Cough increases during acute exacerbations (AE-COPD), representing a possible metric of clinical deterioration. Conventional cough monitors accurately report cough counts over short time periods. We describe a novel monitoring system which we used to record cough continuously for up to 45 days during AE-COPD convalescence. Methods This is a longitudinal, observational study of cough monitoring in AE-COPD patients discharged from a single teaching-hospital. Ambient sound was recorded from two sites in the domestic environment and analysed using novel cough classifier software. For comparison, the validated hybrid HACC/LCM cough monitoring system was used on days 1, 5, 20 and 45. Patients were asked to record symptoms daily using diaries. Results Cough monitoring data were available for 16 subjects with a total of 568 monitored days. Daily cough count fell significantly from mean±SEM 272.7±54.5 on day 1 to 110.9±26.3 on day 9 (p<0.01) before plateauing. The absolute cough count detected by the continuous monitoring system was significantly lower than detected by the hybrid HACC/LCM system but normalised counts strongly correlated (r=0.88, p<0.01) demonstrating an ability to detect trends. Objective cough count and subjective cough scores modestly correlated (r=0.46). Conclusions Cough frequency declines significantly following AE-COPD and the reducing trend can be detected using continuous ambient sound recording and novel cough classifier software. Objective measurement of cough frequency has the potential to enhance our ability to monitor the clinical state in patients with COPD

    Subsurface chlorophyll maxima reduce the performance of non-photochemical quenching corrections in the Southern Ocean

    Get PDF
    Non-photochemical quenching (NPQ) within phytoplankton cells often causes the daytime suppression of chlorophyll fluorescence in the Southern Ocean. This is problematic and requires accurate correction when chlorophyll fluorescence is used as a proxy for chlorophyll-a concentration or phytoplankton abundance. In this study, we reveal that Southern Ocean subsurface chlorophyll maxima (SCMs) are the largest source of uncertainty when correcting for NPQ of chlorophyll fluorescence profiles. A detailed assessment of NPQ correction methods supports this claim by taking advantage of coincident chlorophyll fluorescence and chlorophyll concentration profiles. The best performing NPQ correction methods are conditional methods that consider the mixed layer depth (MLD), subsurface fluorescence maximum (SFM) and depth of 20% surface light. Compared to existing methods, the conditional methods proposed halve the bias in corrected chlorophyll fluorescence profiles and improve the success of replicating a SFM relative to chlorophyll concentration profiles. Of existing methods, the X12 and P18 methods, perform best overall, even when considering methods supplemented by beam attenuation or backscatter data. The widely-used S08 method, is more varied in its performance between profiles and its application introduced on average up to 2% more surface bias. Despite the significant improvement of the conditional method, it still underperformed in the presence of an SCM due to 1) changes in optical properties at the SCM and 2) large gradients of chlorophyll fluorescence across the pycnocline. Additionally, we highlight that conditional methods are best applied when uncertainty in chlorophyll fluorescence yields is within 50%. This highlights the need to better characterize the bio-optics of SCMs and chlorophyll fluorescence yields in the Southern Ocean, so that chlorophyll fluorescence data can be accurately converted to chlorophyll concentration in the absence of in situ water sampling

    FUSE Measurements of Far Ultraviolet Extinction. I. Galactic Sight Lines

    Full text link
    We present extinction curves that include data down to far ultraviolet wavelengths (FUV; 1050 - 1200 A) for nine Galactic sight lines. The FUV extinction was measured using data from the Far Ultraviolet Spectroscopic Explorer. The sight lines were chosen for their unusual extinction properties in the infrared through the ultraviolet; that they probe a wide range of dust environments is evidenced by the large spread in their measured ratios of total-to-selective extinction, R_V = 2.43 - 3.81. We find that extrapolation of the Fitzpatrick & Massa relationship from the ultraviolet appears to be a good predictor of the FUV extinction behavior. We find that predictions of the FUV extinction based upon the Cardelli, Clayton & Mathis (CCM) dependence on R_V give mixed results. For the seven extinction curves well represented by CCM in the infrared through ultraviolet, the FUV extinction is well predicted in three sight lines, over-predicted in two sight lines, and under-predicted in 2 sight lines. A Maximum Entropy Method analysis using a simple three component grain model shows that seven of the nine sight lines in the study require a larger fraction of grain materials to be in dust when FUV extinction is included in the models. Most of the added grain material is in the form of small (radii < 200 A) grains.Comment: Accepted for publication in the Astrophysical Journal. 31 pages with 7 figure
    • 

    corecore