57,023 research outputs found

    A monostrain test apparatus

    Get PDF
    Test apparatus is designed for determining tensile strength, modulus of elasticity, elongation, and thermal coefficient of contraction or expansion of uniformly shaped plastics, adhesives, and foam materials over temperature range of 700 to 90 K (800 to -300). Tests may be used in design quality control, and in evaluation of new adhesives and plastic materials

    Relationship between Thermodynamic Driving Force and One-Way Fluxes in Reversible Chemical Reactions

    Get PDF
    Chemical reaction systems operating in nonequilibrium open-system states arise in a great number of contexts, including the study of living organisms, in which chemical reactions, in general, are far from equilibrium. Here we introduce a theorem that relates forward and re-verse fluxes and free energy for any chemical process operating in a steady state. This rela-tionship, which is a generalization of equilibrium conditions to the case of a chemical process occurring in a nonequilibrium steady state, provides a novel equivalent definition for chemical reaction free energy. In addition, it is shown that previously unrelated theories introduced by Ussing and Hodgkin and Huxley for transport of ions across membranes, Hill for catalytic cycle fluxes, and Crooks for entropy production in microscopically reversible systems, are united in a common framework based on this relationship.Comment: 11 page

    Development of ductile claddings for dispersion-strengthened nickel-base alloys Final report

    Get PDF
    Development of ductile oxidation-resistant cladding alloys for thoria dispersion, strengthened nickel and nickel-chromiu

    Sensing of Fluctuating Nanoscale Magnetic Fields Using NV Centres in Diamond

    Full text link
    New magnetometry techniques based on Nitrogen-Vacancy (NV) defects in diamond allow for the imaging of static (DC) and oscillatory (AC) nanoscopic magnetic systems. However, these techniques require accurate knowledge and control of the sample dynamics, and are thus limited in their ability to image fields arising from rapidly fluctuating (FC) environments. We show here that FC fields place restrictions on the DC field sensitivity of an NV qubit magnetometer, and that by probing the dephasing rate of the qubit in a magnetic FC environment, we are able to measure fluctuation rates and RMS field strengths that would be otherwise inaccessible with the use of DC and AC magnetometry techniques. FC sensitivities are shown to be comparable to those of AC fields, whilst requiring no additional experimental overheads or control over the sample.Comment: 5 pages, 4 figure

    Two hard spheres in a pore: Exact Statistical Mechanics for different shaped cavities

    Full text link
    The Partition function of two Hard Spheres in a Hard Wall Pore is studied appealing to a graph representation. The exact evaluation of the canonical partition function, and the one-body distribution function, in three different shaped pores are achieved. The analyzed simple geometries are the cuboidal, cylindrical and ellipsoidal cavities. Results have been compared with two previously studied geometries, the spherical pore and the spherical pore with a hard core. The search of common features in the analytic structure of the partition functions in terms of their length parameters and their volumes, surface area, edges length and curvatures is addressed too. A general framework for the exact thermodynamic analysis of systems with few and many particles in terms of a set of thermodynamic measures is discussed. We found that an exact thermodynamic description is feasible based in the adoption of an adequate set of measures and the search of the free energy dependence on the adopted measure set. A relation similar to the Laplace equation for the fluid-vapor interface is obtained which express the equilibrium between magnitudes that in extended systems are intensive variables. This exact description is applied to study the thermodynamic behavior of the two Hard Spheres in a Hard Wall Pore for the analyzed different geometries. We obtain analytically the external work, the pressure on the wall, the pressure in the homogeneous zone, the wall-fluid surface tension, the line tension and other similar properties

    Electricity deregulation and the valuation of visibility loss in wilderness areas: A research note.

    Get PDF
    Visibility in most wilderness areas in the northeastern United States has declined substantially since the 1970s. As noted by Hill et al. (2000), despite the 1977 Clean Air Act and subsequent amendments, human induced smog conditions are becoming increasingly worse. Average visibility in class I airsheds, such as the Great Gulf Wilderness in New Hampshire’s White Mountains, is now about one-third of natural conditions. A particular concern is that deregulation of electricity production could result in further degradation because consumers may switch to lower cost fossil fuel generation (Harper 2000). To the extent that this system reduces electricity costs, it may also affect firm location decisions (Halstead and Deller 1997). Yet, little is known about the extent to which consumers are likely to make tradeoffs between electric bills and reduced visibility in nearby wilderness areas. This applied research uses a contingent valuation approach in an empirical case study of consumers’ tradeoffs between cheaper electric bills and reduced visibility in New Hampshire’s White Mountains. We also examine some of the problems associated with uncertainty with this type of analysis; that is, how confident respondents are in their answers to the valuation questions. Finally, policy implications of decreased visibility due to electricity deregulation are discussed

    Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations

    Full text link
    Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior in a submonolayer lattice-gas of interacting monomers adsorbed on one-dimensional channels arranged in a triangular cross-sectional structure. The model mimics a nanoporous environment, where each nanotube or unit cell is represented by a one-dimensional array. Two kinds of lateral interaction energies have been considered: 1)1) wLw_L, interaction energy between nearest-neighbor particles adsorbed along a single channel and 2)2) wTw_T, interaction energy between particles adsorbed across nearest-neighbor channels. For wL/wT=0w_L/w_T=0 and wT>0w_T > 0, successive planes are uncorrelated, the system is equivalent to the triangular lattice and the well-known (3×3)(\sqrt{3} \times \sqrt{3}) [(3×3)][(\sqrt{3} \times \sqrt{3})^*] ordered phase is found at low temperatures and a coverage, θ\theta, of 1/3 [2/3][2/3]. In the more general case (wL/wT0w_L/w_T \neq 0 and wT>0w_T > 0), a competition between interactions along a single channel and a transverse coupling between sites in neighboring channels allows to evolve to a three-dimensional adsorbed layer. Consequently, the (3×3)(\sqrt{3} \times \sqrt{3}) and (3×3)(\sqrt{3} \times \sqrt{3})^* structures "propagate" along the channels and new ordered phases appear in the adlayer. The Monte Carlo technique was combined with the recently reported Free Energy Minimization Criterion Approach (FEMCA), to predict the critical temperatures of the order-disorder transformation. The excellent qualitative agreement between simulated data and FEMCA results allow us to interpret the physical meaning of the mechanisms underlying the observed transitions.Comment: 24 pages, 6 figure

    Generalized Haldane Equation and Fluctuation Theorem in the Steady State Cycle Kinetics of Single Enzymes

    Full text link
    Enyzme kinetics are cyclic. We study a Markov renewal process model of single-enzyme turnover in nonequilibrium steady-state (NESS) with sustained concentrations for substrates and products. We show that the forward and backward cycle times have idential non-exponential distributions: \QQ_+(t)=\QQ_-(t). This equation generalizes the Haldane relation in reversible enzyme kinetics. In terms of the probabilities for the forward (p+p_+) and backward (pp_-) cycles, kBTln(p+/p)k_BT\ln(p_+/p_-) is shown to be the chemical driving force of the NESS, Δμ\Delta\mu. More interestingly, the moment generating function of the stochastic number of substrate cycle ν(t)\nu(t), follows the fluctuation theorem in the form of Kurchan-Lebowitz-Spohn-type symmetry. When $\lambda$ = $\Delta\mu/k_BT$, we obtain the Jarzynski-Hatano-Sasa-type equality: \equiv 1 for all tt, where νΔμ\nu\Delta\mu is the fluctuating chemical work done for sustaining the NESS. This theory suggests possible methods to experimentally determine the nonequilibrium driving force {\it in situ} from turnover data via single-molecule enzymology.Comment: 4 pages, 3 figure
    corecore