1,620 research outputs found

    Assessing a Hydrodynamic Description for Instabilities in Highly Dissipative, Freely Cooling Granular Gases

    Full text link
    An intriguing phenomenon displayed by granular flows and predicted by kinetic-theory-based models is the instability known as particle "clustering," which refers to the tendency of dissipative grains to form transient, loose regions of relatively high concentration. In this work, we assess a modified-Sonine approximation recently proposed [Garz\'o et al., Physica A 376, 94 (2007)] for a granular gas via an examination of system stability. In particular, we determine the critical length scale associated with the onset of two types of instabilities -vortices and clusters- via stability analyses of the Navier-Stokes-order hydrodynamic equations by using the expressions of the transport coefficients obtained from both the standard and the modified-Sonine approximations. We examine the impact of both Sonine approximations over a range of solids fraction \phi <0.2 for small restitution coefficients e=0.25--0.4, where the standard and modified theories exhibit discrepancies. The theoretical predictions for the critical length scales are compared to molecular dynamics (MD) simulations, of which a small percentage were not considered due to inelastic collapse. Results show excellent quantitative agreement between MD and the modified-Sonine theory, while the standard theory loses accuracy for this highly dissipative parameter space. The modified theory also remedies a (highdissipation) qualitative mismatch between the standard theory and MD for the instability that forms more readily. Furthermore, the evolution of cluster size is briefly examined via MD, indicating that domain-size clusters may remain stable or halve in size, depending on system parameters.Comment: 4 figures; to be published in Phys. Rev.

    Application potential of cold neutron radiography in plant science research

    Get PDF
    Though comprehensive knowledge of water status and water flow are important prerequisites for plant in many aspects of modern plant science truly non-destructive methods for the in-situ study of water transport are rare. Advanced imaging methods such as Magnetic Resonance Imaging (MRI) or Cold Neutron Radiography (CNR) may be applied to fill this gap. In CNR strong interaction of cold neutrons with hydrogen provides a high contrast even for small amounts of water. The combination of CNR with the low-contrast tracer D2O allows the direct visualisation of water flow and the calculation of water flow rates in plants with a high resolution at the tissue level. Here, we give a general introduction into this method, describe their latest developments, report about studies applying neutron radiography in plant science and provide most recent results of our experiments in this field

    Applied neutron tomography in modern archaeology

    Get PDF
    The use of neutron tomography for archaeometric purposes is quite a new technique. The property of neutron to transmit easily large, dense samples is of great importance in modern archaeology. The three-dimensional visualisation of the inner structure of samples of archaeological interest helps to make suggestions about the technological process of manufacturing or reveals information about the origins of delivering of noble materials used in ancient masterpieces. Another application field in modern archaeology is the non-destructive inspection of the quality of specimen conservation where the neutron tomography allows visualization of impregnation solutions in wood or metal matrices. The high sensibility of neutrons to hydrogen makes it possible to detect organic remains in fossils. All of these advantages make the neutron tomography a unique technique for non-destructive investigation in archaeological sciences

    Full-field measurements of strain localisation in sandstone by neutron tomography and 3D-volumetric Digital Image Correlation

    Get PDF
    AbstractRecent studies have demonstrated that the combination of x-ray tomography during triaxial tests (“in-situ” tests) and 3D- volumetric Digital Image Correlation (3D-DIC) can provide important insight into the mechanical behaviour and deformation processes of granular materials such as sand. The application of these tools to investigate the mechanisms of failure in rocks is also of obvious interest. However, the relevant applied confining pressures for triaxial testing on rocks are higher than those on sands and therefore stronger pressure containment vessels, i.e., made of thick metal walls, are required. This makes in-situ x-ray imaging of rock deformation during triaxial tests a challenge. One possible solution to overcome this problem is to use neutrons, which should better penetrate the metal-walls of the pressure vessels. In this perspective, this work assesses the capability of neutron tomography with 3D-DIC to measure deformation fields in rock samples. Results from pre- and post-deformation neutron tomography of a Bentheim sandstone sample deformed ex-situ at 40MPa show that clear images of the internal structure can be achieved and utilised for 3D-DIC analysis to reveal the details of the 3D strain field. From these results the character of the localised deformation in the study sample can thus be described. Furthermore, comparison with analyses based on equivalent x-ray tomography imaging of the same sample confirms the effectiveness of the method in relation to the more established x-ray based approach

    In situ radiographic investigation of de lithiation mechanisms in a tin electrode lithium ion battery.

    Get PDF
    The lithiation and delithiation mechanisms of multiple Sn particles in a customized flat radiography cell were investigated by in amp; 8197;situ synchrotron radiography. For the first time, four de lithiation phenomena in a Sn electrode battery system are highlighted 1 amp; 8197;the de lithiation behavior varies between different Sn particles, 2 amp; 8197;the time required to lithiate individual Sn particles is markedly different from the time needed to discharge the complete battery, 3 amp; 8197;electrochemical deactivation of originally electrochemically active particles is reported, and 4 amp; 8197;a change of electrochemical behavior of individual particles during cycling is found and explained by dynamic changes of de lithiation pathways amongst particles within the electrode. These unexpected findings fundamentaly expand the understanding of the underlying de lithiation mechanisms inside commercial lithium ion batteries LIBs and would open new design principles for high performance next generation LIB

    Neutron tomography in modern archaeology

    Get PDF
    The search for non invasive and non destructive techniques is fundamental when dealing with samples of great historical, cultural and artistic value as well as with samples strongly degraded. Among different techniques, Neutron Tomography NT allows a close analysis of samples of Archaeological interest without damaging them. In what follows, a few cases in which the Neutron Tomography instrument of the BENSC at HMI Berlin has been successfully applied will be show

    How Does Your Kindergarten Classroom Affect Your Earnings? Evidence From Project STAR

    Get PDF
    In Project STAR, 11,571 students in Tennessee and their teachers were randomly assigned to classrooms within their schools from kindergarten to third grade. This paper evaluates the long-term impacts of STAR by linking the experimental data to administrative records. We first demonstrate that kindergarten test scores are highly correlated with outcomes such as earnings at age 27, college attendance, home ownership, and retirement savings. We then document four sets of experimental impacts. First, students in small classes are significantly more likely to attend college and exhibit improvements on other outcomes. Class size does not have a significant effect on earnings at age 27, but this effect is imprecisely estimated. Second, students who had a more experienced teacher in kindergarten have higher earnings. Third, an analysis of variance reveals significant classroom effects on earnings. Students who were randomly assigned to higher quality classrooms in grades K-3 – as measured by classmates' end-of-class test scores – have higher earnings, college attendance rates, and other outcomes. Finally, the effects of class quality fade out on test scores in later grades but gains in non-cognitive measures persist.

    X ray Compton Tomography

    Get PDF
    The potentials of incoherent X ray scattering Compton tomography are investigated. Imaging materials of very different density or atomic number at once is a perpetual challenge for X ray tomography or radiography, in general. In a basic laboratory set up for simultaneous perpendicular Compton scattering and direct beam attenuation tomographic scans are conducted by single channel photon counting. This results in asymmetric distortions of the projection profiles of the scattering CT data set. In a first approach corrections of Compton scattering data by taking advantage of rotational symmetry yield tomograms without major geometric artefacts. A cylindrical sample composed of PE, PA, PVC, glass and wood demonstrates similar Compton contrast for all the substances, while the conventional absorption tomogram only reveals the two high order materials. Comparison to neutron tomography reveals astonishing similarities except for the glass component without hydrogen . Therefore, Compton CT bears the potential to replace neutron tomography, which requires much more efforts
    corecore