69 research outputs found

    How large are the level sets of the Takagi function?

    Full text link
    Let T be Takagi's continuous but nowhere-differentiable function. This paper considers the size of the level sets of T both from a probabilistic point of view and from the perspective of Baire category. We first give more elementary proofs of three recently published results. The first, due to Z. Buczolich, states that almost all level sets (with respect to Lebesgue measure on the range of T) are finite. The second, due to J. Lagarias and Z. Maddock, states that the average number of points in a level set is infinite. The third result, also due to Lagarias and Maddock, states that the average number of local level sets contained in a level set is 3/2. In the second part of the paper it is shown that, in contrast to the above results, the set of ordinates y with uncountably infinite level sets is residual, and a fairly explicit description of this set is given. The paper also gives a negative answer to a question of Lagarias and Maddock by showing that most level sets (in the sense of Baire category) contain infinitely many local level sets, and that a continuum of level sets even contain uncountably many local level sets. Finally, several of the main results are extended to a version of T with arbitrary signs in the summands.Comment: Added a new Section 5 with generalization of the main results; some new and corrected proofs of the old material; 29 pages, 3 figure

    Jet production in ep collisions at high Q(2) and determination of alpha(s)

    Get PDF
    The production of jets is studied in deep-inelastic e(+/-) p scattering at large negative four momentum transfer squared 150 LT Q(2) LT 15000 GeV2 using HERA data taken in 1999-2007, corresponding to an integrated luminosity of 395 pb(-1). Inclusive jet, 2-jet and 3-jet cross sections, normalised to the neutral current deep-inelastic scattering cross sections, are measured as functions of Q(2), jet transverse momentum and proton momentum fraction. The measurements are well described by perturbative QCD calculations at next-to-leading order corrected for hadronisation effects. The strong coupling as determined from these measurement
    corecore