3,483 research outputs found

    Mesoscopic phase statistics of diffuse ultrasound in dynamic matter

    Full text link
    Temporal fluctuations in the phase of waves transmitted through a dynamic, strongly scattering, mesoscopic sample are investigated using ultrasonic waves, and compared with theoretical predictions based on circular Gaussian statistics. The fundamental role of phase in Diffusing Acoustic Wave Spectroscopy is revealed, and phase statistics are also shown to provide a sensitive and accurate way to probe scatterer motions at both short and long time scales.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    Viking navigation

    Get PDF
    A comprehensive description of the navigation of the Viking spacecraft throughout their flight from Earth launch to Mars landing is given. The flight path design, actual inflight control, and postflight reconstruction are discussed in detail. The preflight analyses upon which the operational strategies and performance predictions were based are discussed. The inflight results are then discussed and compared with the preflight predictions and, finally, the results of any postflight analyses are presented

    Pod Yield Comparison of Pure-Line Peanut Selections Simultaneously Developed from Georgia and Zimbabwe Breeding Programs

    Get PDF
    Crosses were made between two widely grown U.S. peanut (Arachis hypogaea L.) cultivars, ‘Florunner’ and Florigiant’, and two genotypes adapted to growing conditions on the plateau of tropical Africa, ‘Makulu Red’ and 486 GKP. F2 seed populations were equally divided between Georgia and Zimbabwe. Subsequently, pedigree selection was practised simultaneously at both locations in the early segregating generations. The highest yielding pureline selections were then interchanged, and combined yield evaluations were determined over three growing seasons at each location. ‘Florunner’, ‘Florigiant’, and the Georgia pureline selections tested at the Georgia location had significantly higher pod yields than ‘Makulu Red’, 486 GKP, and the Zimbabwe selections. Conversely, the mean yield of the Zimbabwe selections tested m Zimbabwe was significantly higher than that of the Georgia selections. Thus, the breeding environment under which selection is conducted among cross populations strongly influences the yield adaptability of selected peanut genotype

    A Millimeter-Wave Galactic Plane Survey With The BICEP Polarimeter

    Get PDF
    In addition to its potential to probe the Inflationary cosmological paradigm, millimeter-wave polarimetry is a powerful tool for studying the Milky Way galaxy's composition and magnetic field structure. Towards this end, presented here are Stokes I, Q, and U maps of the Galactic plane from the millimeter-wave polarimeter BICEP covering the Galactic longitude range 260 - 340 degrees in three atmospheric transmission windows centered on 100, 150, and 220 GHz. The maps sample an optical depth 1 < AV < 30, and are consistent with previous characterizations of the Galactic millimeter-wave frequency spectrum and the large-scale magnetic field structure permeating the interstellar medium. Polarized emission is detected over the entire region within two degrees of the Galactic plane and indicates that the large-scale magnetic field is oriented parallel to the plane of the Galaxy. An observed trend of decreasing polarization fraction with increasing total intensity rules out the simplest model of a constant Galactic magnetic field throughout the Galaxy. Including WMAP data in the analysis, the degree-scale frequency spectrum of Galactic polarization fraction is plotted between 23 and 220 GHz for the first time. A generally increasing trend of polarization fraction with electromagnetic frequency is found, which varies from 0.5%-1.5%at frequencies below 50 GHz to 2.5%-3.5%above 90 GHz. The BICEP and WMAP data are fit to a two-component (synchrotron and dust) model showing that the higher frequency BICEP data are necessary to tightly constrain the amplitude and spectral index of Galactic dust. Furthermore, the dust amplitude predicted by this two-component fit is consistent with model predictions of dust emission in the BICEP bands

    Far-infrared polarimetry from the Stratospheric Observatory for Infrared Astronomy

    Get PDF
    Multi-wavelength imaging polarimetry at far-infrared wavelengths has proven to be an excellent tool for studying the physical properties of dust, molecular clouds, and magnetic fields in the interstellar medium. Although these wavelengths are only observable from airborne or space-based platforms, no first-generation instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is presently designed with polarimetric capabilities. We study several options for upgrading the High-resolution Airborne Wideband Camera (HAWC) to a sensitive FIR polarimeter. HAWC is a 12 x 32 pixel bolometer camera designed to cover the 53 - 215 micron spectral range in 4 colors, all at diffraction-limited resolution (5 - 21 arcsec). Upgrade options include: (1) an external set of optics which modulates the polarization state of the incoming radiation before entering the cryostat window; (2) internal polarizing optics; and (3) a replacement of the current detector array with two state-of-the-art superconducting bolometer arrays, an upgrade of the HAWC camera as well as polarimeter. We discuss a range of science studies which will be possible with these upgrades including magnetic fields in star-forming regions and galaxies and the wavelength-dependence of polarization.Comment: 12 pages, 5 figure

    Organization of the gravity-sensing system in zebrafish

    Get PDF
    Motor circuits develop in sequence from those governing fast movements to those governing slow. Here we examine whether upstream sensory circuits are organized by similar principles. Using serial-section electron microscopy in larval zebrafish, we generated a complete map of the gravity-sensing (utricular) system spanning from the inner ear to the brainstem. We find that both sensory tuning and developmental sequence are organizing principles of vestibular topography. Patterned rostrocaudal innervation from hair cells to afferents creates an anatomically inferred directional tuning map in the utricular ganglion, forming segregated pathways for rostral and caudal tilt. Furthermore, the mediolateral axis of the ganglion is linked to both developmental sequence and neuronal temporal dynamics. Early-born pathways carrying phasic information preferentially excite fast escape circuits, whereas later-born pathways carrying tonic signals excite slower postural and oculomotor circuits. These results demonstrate that vestibular circuits are organized by tuning direction and dynamics, aligning them with downstream motor circuits and behaviors

    Transverse confinement of ultrasound through the Anderson transition in 3D mesoglasses

    Get PDF
    We report an in-depth investigation of the Anderson localization transition for classical waves in three dimensions (3D). Experimentally, we observe clear signatures of Anderson localization by measuring the transverse confinement of transmitted ultrasound through slab-shaped mesoglass samples. We compare our experimental data with predictions of the self-consistent theory of Anderson localization for an open medium with the same geometry as our samples. This model describes the transverse confinement of classical waves as a function of the localization (correlation) length, ξ\xi (ζ\zeta), and is fitted to our experimental data to quantify the transverse spreading/confinement of ultrasound all of the way through the transition between diffusion and localization. Hence we are able to precisely identify the location of the mobility edges at which the Anderson transitions occur.Comment: 16 pages, 11 figure

    4. The School Develops

    Get PDF
    Between 1947 and 1953, when M.P. Catherwood left the deanship to become New York’s industrial commissioner, the ILR School developed into a full fledged enterprise. These pages attempt to capture some of the excitement of this period of the school’s history, which was characterized by vigor, growth, and innovation. Includes: Alumni Recall Their Lives as Students; The Faculty Were Giants; Alice Cook: Lifelong Scholar, Consummate Teacher; Frances Perkins; Visits and Visitors; Tenth Anniversary: Reflection and Change; The Emergence of Departments at ILR; Development of International Programs and Outreach

    Nuclear Bar Catalyzed Star Formation: 13^CO, C18^O and Molecular Gas Properties in the Nucleus of Maffei 2

    Get PDF
    (Abridged) We present resolution maps of CO, its isotopologues, and HCN from in the center of Maffei 2. The J=1-0 rotational lines of 12^CO, 13^CO, C18^O and HCN, and the J=2-1 lines of 13^CO and C18^O were observed with the OVRO and BIMA arrays. The 2-1/1-0 line ratios of the isotopologues constrain the bulk of the molecular gas to originate in low excitation, subthermal gas. From LVG modeling, we infer that the central GMCs have n(H_2) ~10^2.75 cm^-3 and T_k ~ 30 K. Continuum emission at 3.4 mm, 2.7 mm and 1.4 mm was mapped to determine the distribution and amount of HII regions and dust. Column densities derived from C18^O and 1.4 mm dust continuum fluxes indicate the CO conversion factor in the center of Maffei 2 is lower than Galactic by factors of ~2-4. Gas morphology and the clear ``parallelogram'' in the Position-Velocity diagram shows that molecular gas orbits within the potential of a nuclear (~220 pc) bar. The nuclear bar is distinct from the bar that governs the large scale morphology of Maffei 2. Giant molecular clouds in the nucleus are nonspherical and have large linewidths. Dense gas and star formation are concentrated at the sites of the x_1-x_2 orbit intersections of the nuclear bar, suggesting that the starburst is dynamically triggered.Comment: 50 pages, 14 figures, accepted for publication in Ap
    • …
    corecore