1,057 research outputs found
Characterization of Turbulence from Submillimeter Dust Emission
In this paper we use our recent technique for estimating the turbulent
component of the magnetic field to derive the structure functions of the
unpolarized emission as well as that of the Stokes Q and U parameters of the
polarized emission. The solutions for the structure functions to 350-um SHARP
polarization data of OMC-1 allow the determination of the corresponding
turbulent correlation length scales. The estimated values for these length
scales are 9.4" +/- 0.1", 7.3" +/- 0.1", 12.6" +/- 0.2" (or 20.5 +/- 0.2, 16.0
+/- 0.2, and 27.5 +/- 0.4 mpc at 450 pc, the adopted distance for OMC-1) for
the Stokes Q and U parameters, and for the unpolarized emission N,
respectively. Our current results for Q and U are consistent with previous
results obtained through other methods, and may indicate presence of anisotropy
in magnetized turbulence. We infer a weak coupling between the dust component
responsible for the unpolarized emission N and the magnetic field B from the
significant difference between their turbulent correlation length scales.Comment: 14 pages, 3 figures; accepted for publication in the Ap
Feeding and defecation behavior of Triatoma rubida (Uhler, 1894) (Hemiptera: Reduviidae) under laboratory conditions, and its potential role as a vector of chagas disease in Arizona, USA
Chagas disease is caused by the parasite Trypanosoma cruzi, which is transmitted to humans by blood-sucking triatomine insects. This disease is endemic throughout Mexico and Central and South America, but only a few autochthonous cases have been reported in the United States, despite the fact that infected insects readily invade houses and feed on humans. Competent vectors defecate during or shortly after feeding so that infective feces contact the host. We thus studied the feeding and defecation behaviors of the prevalent species in southern Arizona, Triatoma rubida. We found that whereas defecation during feeding was frequent in females (93%), it was very rare in immature stages (3%), and absent in males. Furthermore, more than half of the immature insects that exhibited multiple feeding bouts (62%) defecated during interruptions of feeding, i.e., while likely on or near the host. These results indicate that T. rubida potentially could transmit T. cruzi to humans.Fil: Reisenman, Carolina Esther. University of Arizona; Estados UnidosFil: Gregory, Teresa. University of Arizona; Estados UnidosFil: Guerenstein, Pablo Gustavo. Provincia de Entre RÃos. Centro de Investigaciones CientÃficas y Transferencia de TecnologÃa a la Producción. Universidad Autónoma de Entre RÃos. Centro de Investigaciones CientÃficas y Transferencia de TecnologÃa a la Producción. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Santa Fe. Centro de Investigaciones CientÃficas y Transferencia de TecnologÃa a la Producción; ArgentinaFil: Hildebrand, John. University of Arizona; Estados Unido
Synchronous seasonal change in fin whale song in the North Pacific.
Fin whale (Balaenoptera physalus) song consists of down-swept pulses arranged into stereotypic sequences that can be characterized according to the interval between successive pulses. As in blue (B. musculus) and humpback whales (Megaptera novaeangliae), these song sequences may be geographically distinct and may correlate with population boundaries in some regions. We measured inter-pulse intervals of fin whale songs within year-round acoustic datasets collected between 2000 and 2006 in three regions of the eastern North Pacific: Southern California, the Bering Sea, and Hawaii. A distinctive song type that was recorded in all three regions is characterized by singlet and doublet inter-pulse intervals that increase seasonally, then annually reset to the same shorter intervals at the beginning of each season. This song type was recorded in the Bering Sea and off Southern California from September through May and off Hawaii from December through April, with the song interval generally synchronized across all monitoring locations. The broad geographic and seasonal occurrence of this particular fin whale song type may represent a single population broadly distributed throughout the eastern Pacific with no clear seasonal migratory pattern. Previous studies attempting to infer population structure of fin whales in the North Pacific using synchronous individual song samples have been unsuccessful, likely because they did not account for the seasonal lengthening in song intervals observed here
Underwater radiated noise levels of a research icebreaker in the central Arctic Ocean
U.S. Coast Guard Cutter Healy\u27s underwater radiated noise signature was characterized in the central Arctic Ocean during different types of ice-breaking operations. Propulsion modes included transit in variable ice cover, breaking heavy ice with backing-and-ramming maneuvers, and dynamic positioning with the bow thruster in operation. Compared to open-water transit, Healy\u27s noise signature increased approximately 10 dB between 20 Hz and 2 kHz when breaking ice. The highest noise levels resulted while the ship was engaged in backing-and-ramming maneuvers, owing to cavitation when operating the propellers astern or in opposing directions. In frequency bands centered near 10, 50, and 100 Hz, source levels reached 190–200 dB re: 1 μPa at 1 m (full octave band) during ice-breaking operations
Recommended from our members
Migrating eastern North Pacific gray whale call and blow rates estimated from acoustic recordings, infrared camera video, and visual sightings.
During the eastern North Pacific gray whale 2014-2015 southbound migration, acoustic call recordings, infrared blow detections, and visual sightings were combined to estimate cue rates, needed to convert detections into abundance. The gray whale acoustic call rate ranged from 2.3-24 calls/whale/day during the peak of the southbound migration with an average of 7.5 calls/whale/day over both the southbound and northbound migrations. The average daily calling rate increased between 30 December-13 February. With a call rate model, we estimated that 4,340 gray whales migrated south before visual observations began on 30 December, which is 2,829 more gray whales than used in the visual estimate, and would add approximately 10% to the abundance estimate. We suggest that visual observers increase their survey effort to all of December to document gray whale presence. The infrared camera blow rate averaged 49 blows/whale/hour over 5-8 January. Probability of detection of a whale blow by the infrared camera was the same at night as during the day. However, probability of detection decreased beyond 2.1 km offshore, whereas visual sightings revealed consistent whale densities up to 3 km offshore. We suggest that future infrared camera surveys use multiple cameras optimised for different ranges offshore
Acoustic behavior of melon-headed whales varies on a diel cycle.
Many terrestrial and marine species have a diel activity pattern, and their acoustic signaling follows their current behavioral state. Whistles and echolocation clicks on long-term recordings produced by melon-headed whales (Peponocephala electra) at Palmyra Atoll indicated that these signals were used selectively during different phases of the day, strengthening the idea of nighttime foraging and daytime resting with afternoon socializing for this species. Spectral features of their echolocation clicks changed from day to night, shifting the median center frequency up. Additionally, click received levels increased with increasing ambient noise during both day and night. Ambient noise over a wide frequency band was on average higher at night. The diel adjustment of click features might be a reaction to acoustic masking caused by these nighttime sounds. Similar adaptations have been documented for numerous taxa in response to noise. Or it could be, unrelated, an increase in biosonar source levels and with it a shift in center frequency to enhance detection distances during foraging at night. Call modifications in intensity, directionality, frequency, and duration according to echolocation task are well established for bats. This finding indicates that melon-headed whales have flexibility in their acoustic behavior, and they collectively and repeatedly adapt their signals from day- to nighttime circumstances
Innate Recognition of Pheromone and Food Odors in Moths: A Common Mechanism in the Antennal Lobe?
The survival of an animal often depends on an innate response to a particular sensory stimulus. For an adult male moth, two categories of odors are innately attractive: pheromone released by conspecific females, and the floral scents of certain, often co-evolved, plants. These odors consist of multiple volatiles in characteristic mixtures. Here, we review evidence that both categories of odors are processed as sensory objects, and we suggest a mechanism in the primary olfactory center, the antennal lobe (AL), that encodes the configuration of these mixtures and may underlie recognition of innately attractive odors. In the pheromone system, mixtures of two or three volatiles elicit upwind flight. Peripheral changes are associated with behavioral changes in speciation, and suggest the existence of a pattern recognition mechanism for pheromone mixtures in the AL. Moths are similarly innately attracted to certain floral scents. Though floral scents consist of multiple volatiles that activate a broad array of receptor neurons, only a smaller subset, numerically comparable to pheromone mixtures, is necessary and sufficient to elicit behavior. Both pheromone and floral scent mixtures that produce attraction to the odor source elicit synchronous action potentials in particular populations of output (projection) neurons (PNs) in the AL. We propose a model in which the synchronous output of a population of PNs encodes the configuration of an innately attractive mixture, and thus comprises an innate mechanism for releasing odor-tracking behavior. The particular example of olfaction in moths may inform the general question of how sensory objects trigger innate responses
Magnetic Fields and Infall Motions in NGC 1333 IRAS 4
We present single-dish 350 micron dust continuum polarimetry as well as HCN
and HCO+ J=4-3 rotational emission spectra obtained on NGC 1333 IRAS 4. The
polarimetry indicates a uniform field morphology over a 20" radius from the
peak continuum flux of IRAS 4A, in agreement with models of magnetically
supported cloud collapse. The field morphology around IRAS 4B appears to be
quite distinct however, with indications of depolarization observed towards the
peak flux of this source. Inverse P-Cygni profiles are observed in the HCN
J=4-3 line spectra towards IRAS 4A, providing a clear indication of infall gas
motions. Taken together, the evidence gathered here appears to support the
scenario that IRAS 4A is a cloud core in a critical state of support against
gravitational collapse.Comment: 23 pages, 6 figures, 2 table
- …