2,131 research outputs found

    Sufficient conditions for convergence of the Sum-Product Algorithm

    Get PDF
    We derive novel conditions that guarantee convergence of the Sum-Product algorithm (also known as Loopy Belief Propagation or simply Belief Propagation) to a unique fixed point, irrespective of the initial messages. The computational complexity of the conditions is polynomial in the number of variables. In contrast with previously existing conditions, our results are directly applicable to arbitrary factor graphs (with discrete variables) and are shown to be valid also in the case of factors containing zeros, under some additional conditions. We compare our bounds with existing ones, numerically and, if possible, analytically. For binary variables with pairwise interactions, we derive sufficient conditions that take into account local evidence (i.e., single variable factors) and the type of pair interactions (attractive or repulsive). It is shown empirically that this bound outperforms existing bounds.Comment: 15 pages, 5 figures. Major changes and new results in this revised version. Submitted to IEEE Transactions on Information Theor

    Cosmic Shear Results from the Deep Lens Survey - II: Full Cosmological Parameter Constraints from Tomography

    Full text link
    We present a tomographic cosmic shear study from the Deep Lens Survey (DLS), which, providing a limiting magnitude r_{lim}~27 (5 sigma), is designed as a pre-cursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on depth. Using five tomographic redshift bins, we study their auto- and cross-correlations to constrain cosmological parameters. We use a luminosity-dependent nonlinear model to account for the astrophysical systematics originating from intrinsic alignments of galaxy shapes. We find that the cosmological leverage of the DLS is among the highest among existing >10 sq. deg cosmic shear surveys. Combining the DLS tomography with the 9-year results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives Omega_m=0.293_{-0.014}^{+0.012}, sigma_8=0.833_{-0.018}^{+0.011}, H_0=68.6_{-1.2}^{+1.4} km/s/Mpc, and Omega_b=0.0475+-0.0012 for LCDM, reducing the uncertainties of the WMAP9-only constraints by ~50%. When we do not assume flatness for LCDM, we obtain the curvature constraint Omega_k=-0.010_{-0.015}^{+0.013} from the DLS+WMAP9 combination, which however is not well constrained when WMAP9 is used alone. The dark energy equation of state parameter w is tightly constrained when Baryonic Acoustic Oscillation (BAO) data are added, yielding w=-1.02_{-0.09}^{+0.10} with the DLS+WMAP9+BAO joint probe. The addition of supernova constraints further tightens the parameter to w=-1.03+-0.03. Our joint constraints are fully consistent with the final Planck results and also the predictions of a LCDM universe.Comment: Accepted for publication in Ap

    Noether symmetries, energy-momentum tensors and conformal invariance in classical field theory

    Full text link
    In the framework of classical field theory, we first review the Noether theory of symmetries, with simple rederivations of its essential results, with special emphasis given to the Noether identities for gauge theories. Will this baggage on board, we next discuss in detail, for Poincar\'e invariant theories in flat spacetime, the differences between the Belinfante energy-momentum tensor and a family of Hilbert energy-momentum tensors. All these tensors coincide on shell but they split their duties in the following sense: Belinfante's tensor is the one to use in order to obtain the generators of Poincar\'e symmetries and it is a basic ingredient of the generators of other eventual spacetime symmetries which may happen to exist. Instead, Hilbert tensors are the means to test whether a theory contains other spacetime symmetries beyond Poincar\'e. We discuss at length the case of scale and conformal symmetry, of which we give some examples. We show, for Poincar\'e invariant Lagrangians, that the realization of scale invariance selects a unique Hilbert tensor which allows for an easy test as to whether conformal invariance is also realized. Finally we make some basic remarks on metric generally covariant theories and classical field theory in a fixed curved bakground.Comment: 31 pa

    Luminosity distance in Swiss cheese cosmology with randomized voids. II. Magnification probability distributions

    Full text link
    We study the fluctuations in luminosity distances due to gravitational lensing by large scale (> 35 Mpc) structures, specifically voids and sheets. We use a simplified "Swiss cheese" model consisting of a \Lambda -CDM Friedman-Robertson-Walker background in which a number of randomly distributed non-overlapping spherical regions are replaced by mass compensating comoving voids, each with a uniform density interior and a thin shell of matter on the surface. We compute the distribution of magnitude shifts using a variant of the method of Holz & Wald (1998), which includes the effect of lensing shear. The standard deviation of this distribution is ~ 0.027 magnitudes and the mean is ~ 0.003 magnitudes for voids of radius 35 Mpc, sources at redshift z_s=1.0, with the voids chosen so that 90% of the mass is on the shell today. The standard deviation varies from 0.005 to 0.06 magnitudes as we vary the void size, source redshift, and fraction of mass on the shells today. If the shell walls are given a finite thickness of ~ 1 Mpc, the standard deviation is reduced to ~ 0.013 magnitudes. This standard deviation due to voids is a factor ~ 3 smaller than that due to galaxy scale structures. We summarize our results in terms of a fitting formula that is accurate to ~ 20%, and also build a simplified analytic model that reproduces our results to within ~ 30%. Our model also allows us to explore the domain of validity of weak lensing theory for voids. We find that for 35 Mpc voids, corrections to the dispersion due to lens-lens coupling are of order ~ 4%, and corrections to due shear are ~ 3%. Finally, we estimate the bias due to source-lens clustering in our model to be negligible

    Inter-species variation in colour perception

    Get PDF
    Inter-species variation in colour perception poses a serious problem for the view that colours are mind-independent properties. Given that colour perception varies so drastically across species, which species perceives colours as they really are? In this paper, I argue that all do. Specifically, I argue that members of different species perceive properties that are determinates of different, mutually compatible, determinables. This is an instance of a general selectionist strategy for dealing with cases of perceptual variation. According to selectionist views, objects simultaneously instantiate a plurality of colours, all of them genuinely mind-independent, and subjects select from amongst this plurality which colours they perceive. I contrast selectionist views with relationalist views that deny the mind-independence of colour, and consider some general objections to this strategy

    Structure and dynamics of topological defects in a glassy liquid on a negatively curved manifold

    Get PDF
    We study the low-temperature regime of an atomic liquid on the hyperbolic plane by means of molecular dynamics simulation and we compare the results to a continuum theory of defects in a negatively curved hexagonal background. In agreement with the theory and previous results on positively curved (spherical) surfaces, we find that the atomic configurations consist of isolated defect structures, dubbed "grain boundary scars", that form around an irreducible density of curvature-induced disclinations in an otherwise hexagonal background. We investigate the structure and the dynamics of these grain boundary scars

    Persistence of a pinch in a pipe

    Full text link
    The response of low-dimensional solid objects combines geometry and physics in unusual ways, exemplified in structures of great utility such as a thin-walled tube that is ubiquitous in nature and technology. Here we provide a particularly surprising consequence of this confluence of geometry and physics in tubular structures: the anomalously large persistence of a localized pinch in an elastic pipe whose effect decays very slowly as an oscillatory exponential with a persistence length that diverges as the thickness of the tube vanishes, which we confirm experimentally. The result is more a consequence of geometry than material properties, and is thus equally applicable to carbon nanotubes as it is to oil pipelines.Comment: 6 pages, 3 figure

    The double torus as a 2D cosmos: groups, geometry and closed geodesics

    Full text link
    The double torus provides a relativistic model for a closed 2D cosmos with topology of genus 2 and constant negative curvature. Its unfolding into an octagon extends to an octagonal tessellation of its universal covering, the hyperbolic space H^2. The tessellation is analysed with tools from hyperbolic crystallography. Actions on H^2 of groups/subgroups are identified for SU(1, 1), for a hyperbolic Coxeter group acting also on SU(1, 1), and for the homotopy group \Phi_2 whose extension is normal in the Coxeter group. Closed geodesics arise from links on H^2 between octagon centres. The direction and length of the shortest closed geodesics is computed.Comment: Latex, 27 pages, 5 figures (late submission to arxiv.org
    • …
    corecore