We study the low-temperature regime of an atomic liquid on the hyperbolic
plane by means of molecular dynamics simulation and we compare the results to a
continuum theory of defects in a negatively curved hexagonal background. In
agreement with the theory and previous results on positively curved (spherical)
surfaces, we find that the atomic configurations consist of isolated defect
structures, dubbed "grain boundary scars", that form around an irreducible
density of curvature-induced disclinations in an otherwise hexagonal
background. We investigate the structure and the dynamics of these grain
boundary scars