19 research outputs found

    Aerosol forcing of the position of the intertropical convergence zone since AD1550

    Get PDF
    The position of the intertropical convergence zone is an important control on the distribution of low-latitude precipitation. Its position is largely controlled by hemisphere temperature contrasts1, 2. The release of aerosols by human activities may have resulted in a southward shift of the intertropical convergence zone since the early 1900s (refs 1, 3, 4, 5, 6) by muting the warming of the Northern Hemisphere relative to the Southern Hemisphere over this interval1, 7, 8, but this proposed shift remains equivocal. Here we reconstruct monthly rainfall over Belize for the past 456 years from variations in the carbon isotope composition of a well-dated, monthly resolved speleothem. We identify an unprecedented drying trend since ad 1850 that indicates a southward displacement of the intertropical convergence zone. This drying coincides with increasing aerosol emissions in the Northern Hemisphere and also marks a breakdown in the relationship between Northern Hemisphere temperatures and the position of the intertropical convergence zone observed earlier in the record. We also identify nine short-lived drying events since ad 1550 each following a large volcanic eruption in the Northern Hemisphere. We conclude that anthropogenic aerosol emissions have led to a reduction of rainfall in the northern tropics during the twentieth century, and suggest that geographic changes in aerosol emissions should be considered when assessing potential future rainfall shifts in the tropics

    Sensitivity of Twentieth-Century Sahel Rainfall to Sulfate Aerosol and CO2 Forcing

    No full text
    Afull understanding of the causes of the severe drought seen in the Sahel in the latter part of the twentiethcentury remains elusive some 25 yr after the height of the event. Previous studies have suggested that this drying trend may be explained by either decadal modes of natural variability or by human-driven emissions (primarily aerosols), but these studies lacked a sufficiently large number of models to attribute one cause over the other. In this paper, signatures of both aerosol and greenhouse gas changes on Sahel rainfall are illustrated. These idealized responses are used to interpret the results of historical Sahel rainfall changes from two very large ensembles of fully coupled climate models, which both sample uncertainties arising from internal variability and model formulation. The sizes of these ensembles enable the relative role of human-driven changes and natural variability on historic Sahel rainfall to be assessed. The paper demonstrates that historic aerosol changes are likely to explain most of the underlying 1940-80 drying signal and a notable proportion of the more pronounced 1950-80 drying. © 2011 American Meteorological Society

    Conclusions

    No full text
    corecore