434 research outputs found
Wire scanners in low energy accelerators
Fast wire scanners are today considered as part of standard instrumentation
in high energy synchrotrons. The extension of their use to synchrotrons working
at lower energies, where Coulomb scattering can be important and the transverse
beam size is large, introduces new complications considering beam heating of
the wire, composition of the secondary particle shower and geometrical
consideration in the detection set-up. A major problem in treating these
effects is that the creation of secondaries in a thin carbon wire by a
energetic primary beam is difficult to describe in an analytical way. We are
here presenting new results from a full Monte Carlo simulation of this process
yielding information on heat deposited in the wire, particle type and energy
spectrum of secondaries and angular dependence as a function of primary beam
energy. The results are used to derive limits for the use of wire scanners in
low energy accelerators.Comment: 20 pages, 8 Postscript figures, uses elsart.cl
Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN
Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (101⎯⎯0)(101¯0)(101¯0) m-plane surface. The diffuse scattering is extended in the (0001)(0001)(0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [12⎯⎯10][12¯10] [12¯10] and closely spaced along [0001][0001][0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. The island spacing along [0001][0001][0001] observed during the growth of the first monolayer obeys a power-law dependence on growth rate F−nF−nF−n, with an exponent n=0.25±0.02n=0.25±0.02n=0.25±0.02. The results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4
A Compact Beam Stop for a Rare Kaon Decay Experiment
We describe the development and testing of a novel beam stop for use in a
rare kaon decay experiment at the Brookhaven AGS. The beam stop is located
inside a dipole spectrometer magnet in close proximity to straw drift chambers
and intercepts a high-intensity neutral hadron beam. The design process,
involving both Monte Carlo simulations and beam tests of alternative beam-stop
shielding arrangements, had the goal of minimizing the leakage of particles
from the beam stop and the resulting hit rates in detectors, while preserving
maximum acceptance for events of interest. The beam tests consisted of
measurements of rates in drift chambers, scintilation counter hodoscopes, a gas
threshold Cherenkov counter, and a lead glass array. Measurements were also
made with a set of specialized detectors which were sensitive to low-energy
neutrons, photons, and charged particles. Comparisons are made between these
measurements and a detailed Monte Carlo simulation.Comment: 39 pages, 14 figures, submitted to Nuclear Instruments and Method
Search for the Weak Decay of an H Dibaryon
We have searched for a neutral dibaryon decaying via and
. Our search has yielded two candidate events from which we set
an upper limit on the production cross section. Normalizing to the
inclusive production cross section, we find at 90% C.L., for an of mass
2.15 GeV/.Comment: 11 pages, 6 postscript figures, epsfig, aps, preprint, revte
Mapping malaria risk in the Highlands of Africa
Includes CD-ROM in front pocketCD-ROM contains report in Adobe Acrobat format; requires Acrobat v. 4.
Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO3
The dynamical processes associated with electric field manipulation of the polarization in a ferroelectric remain largely unknown but fundamentally determine the speed and functionality of ferroelectric materials and devices. Here we apply subpicosecond duration, single-cycle terahertz pulses as an ultrafast electric field bias to prototypical BaTiO[subscript 3] ferroelectric thin films with the atomic-scale response probed by femtosecond x-ray-scattering techniques. We show that electric fields applied perpendicular to the ferroelectric polarization drive large-amplitude displacements of the titanium atoms along the ferroelectric polarization axis, comparable to that of the built-in displacements associated with the intrinsic polarization and incoherent across unit cells. This effect is associated with a dynamic rotation of the ferroelectric polarization switching on and then off on picosecond time scales. These transient polarization modulations are followed by long-lived vibrational heating effects driven by resonant excitation of the ferroelectric soft mode, as reflected in changes in the c-axis tetragonality. The ultrafast structural characterization described here enables a direct comparison with first-principles-based molecular-dynamics simulations, with good agreement obtained
- …