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Fig. 1. Geometry of beam and wire

1 Introduction

Fast wire scanners have been used successfully for beam profile measurements
in the CERN-PS [1–5] for more than ten years. We are presently considering
to extend the use of them to the PS injector, the PS Booster. The PSB is a
synchrotron with four superimposed rings accelerating up to 1×1013 protons
per ring from 50 MeV to 1 GeV kinetic beam energy. Operation of the fast
wire scanners in this low energy region where the physical beam emittance
is large has triggered us to take a new look at the theory for wire heating,
emittance blow up and the importance of the geometrical relationships in the
detector set-up. The work has been specially aimed at the low energy domain
of a proton beam but the results are in general valid also for the high energy
domain.

The design and operation of fast wire scanners has been described elsewhere
[1–8]. We will here only concern ourselves with the problems that set the limits
for the use of these devices. For our discussion we need to define a geometry
and as a starting point we use the geometry shown in Fig. 1. The figure is
showing an instant in the process of the wire sweeping through the beam. The
transverse particle distribution within the beam is for simplicity taken to be
Gaussian. As a measure for the beam size we have in this work used 4× σ of
the Gaussian beam profile as the measure for the beam width. This transforms
to the so called 2σ emittance which at the CERN-PS is the standard quoted
measure for transverse beam emittance.
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2 Simulation of beam-wire interaction

The fast wire scanner method for measuring beam profiles is based on the
simple fact that an energetic particle beam passing any obstacle , in our case a
thin carbon wire, will create a secondary particle shower which is proportional
to the primary beam intensity. The limits for the method is determined by
how much deposited heat the carbon wire can support and the possibility of
detecting the secondary particles. With this in mind we have simulated the
process of a primary proton beam passing a thin carbon wire using the FLUKA
code, [9]. The main interaction parameters studied are the heat deposited in
the carbon wire, the angular dependence of the particle shower as a function of
energy and the particle composition and energy spectrum of the secondaries.

2.1 Heat deposited in the carbon wire

The simulation was especially aimed at calculating the part of the interaction
energy deposited in the wire (which eventually is transferred to heat). The
fraction of the total deposited energy leaving through the nuclear interaction
proved to be very small, e.g. at 100 MeV kinetic beam energy 35.5 keV is
deposited in wire as heat and only 0.67 keV is leaving the wire through the
nuclear interaction. The nuclear interaction part of the energy remains more
or less constant up to the highest simulated value at 1 GeV. Furthermore,
we also calculated the possible spread of the deposited energy along the wire
due to internal scattering and even at the finest spatial resolution used in our
simulations of 0.001 mm no significant smearing of the deposited energy was
observed.

As a model for the energy loss we take the Bethe–Bloch formula (see e.g.[12])

dE
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= 2πNar

2
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2ρ
Z
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z2

β2

[
ln
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2β2γ2Wmax

I2

)
− 2β2

]
, (1)

The symbols are explained in Tab. 1. The maximum energy transfer can be
written as

Wmax =
2mec

2β2γ2

1 + 2sγ + s2
. (2)

with s = me/mp. The details of the notation is explained in e.g. [12]. For
protons in the beam s is small and we can approximate

Wmax ' 2mec
2β2γ2 , (3)

unless 2sγ >∼ 1, i.e. the energy of the proton beam is more than about 2 TeV.
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Table 1
Numerical values used in the Bethe–Bloch equation for a carbon wire.

Na Avogadros Number 6.022×1026 ×10−3mol−1

re classical electron radius 2.817×10−15 m

me electron rest mass 9.109×10−31 kg

c light velocity 2.9979×108 ms−1

ρ graphite density 1.77×103 kg m−3

Z atomic number 6

A atomic weight 12

z charge of incident particle 1

Wmax maximum energy transfer 1.637×10−13β2γ2 kg m2 s−2

mp mass of incident particle 1.672×10−27 kg

I mean excitation potential 1.266×10−17 kg m2 s−2
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Fig. 2. Simulated and Bethe–Bloch values of dE/dz for a carbon wire as a function
of kinetic energy , E = mpc

2(γ − 1).

The values we use in the Bethe–Bloch equation are compiled in Tab. 1 and
the values wire together with other numerical values are given in Tab. 2.

In Fig. 2 we compare the Bethe–Bloch equation with the Monte–Carlo sim-
ulation. The deviation between the theory and the simulation is small and
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Table 2
Additional accelerator, beam and wire parameters

η emissivity (C) 0.88

σ Stephan–Boltzmann constant 5.67×10−8 kg s−3 K−4

cV heat capacity (C) 1.25×106 kg s−2 m−1 K−1

r wire radius 1.5×10−5 m

N number of beam particles 2×1013

τ0 revolution time at β = 1 2.1×10−6 s

εNx normalised beam emittance, x 1.7×10−4 m

εNy normalised beam emittance, y 9.0×10−5 m

βTx Twiss value, x 12 m

βTy Twiss value, y 21 m

v wire velocity 20 m s−1

κ heat conductivity (C) 150 Wm−1K−1

justifies using the Bethe–Bloch equation for the rest of the analysis.

2.2 Secondary particle shower

The inelastic cross section of a 100MeV proton in carbon is of the order of
240mb, rising to about 250mb at 1GeV. The elastic cross section drops from
about 180mb at 100MeV to roughly 100mb at 1GeV.

For the typical total scattering cross section of 400 mb and a carbon density
of 2.3g/cm3 the mean free path in the wire material is 21.7 cm. For a wire
with a radius of 15µm the average number of protons needed to obtain one
scattering is 9200. Since the interaction probability is so small, scattering of
the produced secondaries can be neglected.

Using the scattered particles the beam intensity can be monitored, by mea-
suring the energy deposition in a detector well away from the beam axis. This
requires that the energy deposited per one scattered particle is known. This
can be calculated with the FLUKA Monte Carlo program [9].

The simulations should be carried out in a realistic geometry, since stray
radiation around an accelerator may give a significant contribution to the total
energy deposition. The simulations presented in the following were carried out
in a very idealized geometry.

The detectors were represented by polyethylene disks of 5 mm thickness, 3 cm
diameter and a density of 0.95 g/cm3. These were placed at a radial distance
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of 50 cm from the point where the beam hits the wire. 17 detectors, starting
at a polar angle of 10 degrees and spaced by 10 degrees were used.

The scattering of protons with 100MeV and 1GeV kinetic energy was studied.
Instead of simulating a beam hitting the wire, we first created sets of 10000
elastic and 10000 inelastic events for both energies. The secondaries from
these events were then mixed in ratios given by the inelastic and elastic cross
sections. Since these event sets were postulated to be representative of an
infinite number of events, the event structure itself was not important. So the
azimuth angle of each secondary particle could be separately sampled between
zero and 2π. Due to the small solid angle covered by the detectors the relatively
limited number of events could be reused several times to improve the statistics
of the quantities scored at the detectors.

The obtained energy deposition is shown in Fig. 3. Normalization is to one
proton incident on the wire assuming a circular wire with 30µm diameter. In
the upper plots the total energy deposition and the fraction coming from elas-
tic scattering is shown separately. It can be seen that the elastic contribution
quickly becomes negligible, which is fortunate, since the angular distributions
of the elastic scattering in Fluka are not really optimized to reproduce single
scattering distributions. In particular they lack the diffractive structure, which
is characteristic for elastic scattering and only reproduce rough trends of the
differential cross section.

The lower plots show a comparison of the energy deposition in the detectors if
material is introduced between the wire and the detectors. In a real situation
there will always be at least a thin window, sometimes a thick beam pipe.
Therefore we compare four cases, our idealized one without any material and
with three steel window thicknesses of 0.1, 1 and 10mm. This “window” was
in the simulations a spherical iron (density 7.87 g/cm3) shell of 40 cm radius,
surrounding the point where the particles originated from. It can be seen
that the thicker windows start to reduce the energy deposition only at large
angles. At the forward angles the presence of material can even increase the
energy deposition due to secondary interactions. As expected the material has
more effect for the lower beam energy. Qualitatively the behaviour can be
understood by looking at the particle spectra. These are shown in Fig. 4 for
scattering angles of 10 (± 5) degrees and 90 (± 5) degrees. It can be seen that
at 90 degrees the particle spectra are considerably softer than in the forward
direction, which accounts for the larger effect of material. Of course also the
spectra for the lower beam energy are softer than those from the higher one.
A minimum ionizing particle would loose about 12 MeV/cm in iron, which
already would cut into the spectrum. In fact all of the particles are on the
1/β2 part of the Bethe–Bloch equation, and therefore lose much more than 12
MeV/cm. And with decreasing energy this energy loss increases rapidly. So a
10mm iron layer stops a significant fraction of the particles.

Two aspects should be kept in mind when interpreting these results:
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Fig. 3. Energy deposition in the polyethylene detectors as a function of angle with
respect to the beam direction. Normalisation is to one particle incident on the 30 µm
wire.

(i) At the low energies considered here evaporation fragments and splitting of
the 12C nucleus into three helium nuclei are important inelastic channels.
The heavy fragments have not been transported. This underestimates the
result and probably their effect would be to make the angular distribution
flatter, since elastic scattering and particle production are less isotropic
than evaporation and fragmentation. However, the heavy fragments are
very slow and therefore highly ionising, so they most probably would
be stopped in almost any kind of window separating the wire from the
detectors.

(ii) As was pointed out previously the simulations should be done in a realistic
geometry with realistic beam halo. Neither surrounding walls, nor support
materials, nor the arriving beam have been included in the simulations.
Their effect would be to generate stray radiation, mostly photons and
neutrons all over the system. Especially plastic scintillators would be
sensitive to this stray radiation field.
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Fig. 4. Kinetic energy spectra of secondaries, the solid line shows the spectrum
for a primary proton beam of 1 GeV kinetic energy and the dashed line for a
primary proton beam of 100 MeV. Note that direct photons are not an important
contribution and have not been plotted. The neutral pions however are included in
the plots of the third column.

3 Beam heating of the wire

3.1 A simple model of heating

In the process of is interaction with the beam the wire the wire gets heated
by energy absorption. We shall formulate a model to estimate the maximal
temperature rise in the stationary situation when the wire sweeps back and
forth with a given frequency. The formalism is generally valid for any particle
type and any energy range. The numerical examples are given for a low energy
proton beam. For a general discussion on heating in any obstacle by a primary
beam we refer to [10], for a detailed discussion of the heating in a carbon wire
by protons to [14] and for high energy electrons to [11]. We compile the main
results here for convenience. Let us initially neglect conductive cooling and
only consider radiative cooling, in the end of this section we will derive the
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condition for this approximation.

When the wire is in the beam it is thus heated according to the equation

dT

dt
=

Nβ

Aτ0cV

dE

dx
− 2σηT 4

rcV
≡ a− bT 4 , (4)

and the maximal temperature it can reach is

Tm =

(
Nβr

2Aτ0ση

dE

dx

)1/4

. (5)

For constant normalised emittance it is useful re-express everything in terms of
β. Furthermore, we must also account for the fact that the highest temperature
is reached in the part of the wire that sweeps through the centre of the assumed
Gaussian beam profile. So all together we can write the maximum temperature
as,

T 4
m =

4Nr

4π τ0ση

1√
εNxεNyβTxβTy

β2

√
1− β2

dE

dz
. (6)

From the previous section we know that the energy deposited as heat in the
wire is well described by the Bethe–Bloch formula. The asymptotic form of
dE/dz for two ranges of β can be written as

dE

dz
∼ 1

β2
(ln β + const.) ; for β � 1 , (7)

dE

dz
∼ ln

1

1− β2
; for 1− β2 � 1 . (8)

We assume that β is not so small that dE/dz changes sign. The consequences
for Tm in the limiting cases are

Tm∼ lnβ + const. ; for β � 1 , (9)

Tm∼ (1− β2)−1/8

(
ln

1

1− β2

)1/4

; for 1− β2 � 1 . (10)

That is, for small β it goes to a constant up to logarithmic corrections, while
at β <∼ 1 the maximal temperature increases with the beam energy E like
Tm ∼ E1/4. This estimate is valid for a wire which remains in the centre
of the beam. If the wire is swept with a constant speed and frequency the
time the wire spends in the beam decreases with increasing E since the beam
size decreases, thus seemingly reducing the final temperature. In order to find
out what really happens in that case we need to solve the dynamical heating
problem.
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3.2 Solution to the periodic heating

We shall now find the stationary temperature in the case the wire is swept
through the beam with a given speed and frequency. The wire is cooled by
radiation from a temperature T0 to T1 during the cooling time tc, and then
heated to T2 during the heating time th. Putting T0 = T2 we shall find the max-
imal temperature in the stationary situation. During cooling the temperature
is governed by the equation

dT

dt
= −bT 4 , (11)

with the solution

T1 = T0

(
1

1 + 3btcT 3
0

)1/3

≡ T0α(T0) . (12)

We can interpret th as an effective heating time taking into account the vari-
ation of the beam intensity. After solving Eq. (4) and equating T0 and T2 we
find the implicit equation for T0

2
(
atan

T0

Tm

− atan
T0α

Tm

)
+ ln

[
(Tm + T0)(Tm − T0α)

(Tm − T0)(Tm + T0α)

]
= 4bthT

3
m . (13)

We can gain some insight by solving this equation in the limiting cases of very
long and very short cooling times, i.e. α ' 0 and α ' 1.

3.2.1 Long cooling time

When the cooling time is long,

tc � rcV

6σηT 3
0

, (14)

i.e. α(T0) ' 0, Eq. (13) reduces to

2 atan
T0

Tm
+ ln

Tm + T0

Tm − T0
= 4bthT

3
m , (15)

which has the approximate solution

T0'Tm , bthT
3
m

>∼ 1 , (16)

T0' bthT
4
m , bthT

3
m

<∼ 1 . (17)
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Using the effective heating time

th =
2∆x

v
=

√
εNxβTx

v

(
1− β2

β2

)1/4

, (18)

we have in the limit of large and small beam energy

T0 ' Tm ∼ const. since bthT
3
m →∞ as β → 0 , (19)

T0 ∼ (1− β2)1/8

(
ln

1

1− β2

)1/4

since bthT
3
m → 0 as β → 1 . (20)

In the case the final temperature is small it is necessary to pay extra attention
to the condition in Eq. (14) since it tends to be more difficult to satisfy.

3.2.2 Short cooling time

It is also possible to find an approximative solution to Eq. (13) in the case
the cooling time is very short. Then α ' 1 and we also expect that T0 ' Tm.
Doing an expansion in small deviations we find

T0 ' Tm


1− 2tc

rcV

σηT 3
m

exp[8σηT 3
mth

rcV
]− 1


 , (21)

but, as we shall see, the cooling time has to be very short for this approxima-
tion to be valid.

3.2.3 Conductivity

So far we have neglected conductivity in the wire and we shall now estimate
its importance compared to radiation. As a measure of the importance of
conductivity we shall compare the radiated energy from the heated region of
the wire with the conducted energy. The conducted energy per unit time is

Pc = −πr2κ
∂T

∂y
(0) = 2πrT

5/2
0

(
ησκr

5

)1/2

, (22)

where

T (y) = T0

(
1 +

y

L

)−2/3

, L =

(
5rκ

9ησT 3
0

)1/2

. (23)

while the radiated power is

Pr = 4πr∆y ησT 4
0 . (24)
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The conductivity can be neglected when the condition

Pr

Pc

=
10∆y

3L
=

(
5ησT 3

0 εNyβTy

rκβγ

)1/2

� 1 , (25)

is satisfied.

3.3 Numerical example

In order to better see the validity of the approximations and the actual phys-
ical values they predict we shall go through a real example with a carbon
wire in a proton beam. It is important to remember that the nature of our
problem and the many approximations done in our derivation are such that
we can’t hope for high numerical precision results. The derived formulas can
only give us an idea of the temperatures reached and show the temperatures
energy dependence. The values we use in the Bethe–Bloch equation are given
in Tab. 1. Other numerical values are given in Tab. 2.

With the parameters in the tables the maximal temperature is given by

Tm = 1200 (1− β2)−1/8

[
ln

β2

1− β2
+ 9.47− β2

]1/4

K . (26)

In Fig. 5 the upper solid line shows Tm as a function of beam energy E using

β(E) =

√√√√1−
(

mpc2

E + mpc2

)2

. (27)

For long cooling time we can use the approximate formula in Eq. (16). It turns
out that the combination bthT

3
m is in fact small for a large range of energies

so the approximate temperature is T0 = bthT
4
m. We show this as a function

of energy as the lower solid line in Fig. 5. The condition for the long cooling
time to be valid is from Eq. (14) that

tc � 6×107 K3

T 3
0

s . (28)

The right hand side of this equation is plotted as the solid line in Fig. 6.

For low energies the sweep frequency must be well below 0.01 Hertz for this
approximation to be valid. The approximation of short cooling time is valid if
the correction in Eq. (21) is small, which means

tc � rcV

2σηT 3
m

(exp[
8σηT 3

mth
rcV

]− 1) , (29)
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and this limit is also plotted in Fig. 6 (dashed line). Since there is a wide
range of cooling times for which none of the above approximations works we
should also solve the full Eq. (13) exactly. This solution is presented in Fig. 5
for tc = 0.001, 0.1 and 100 s.

Finally we need to check from Eq. (25) that the conductivity is negligible in
our example. At high energy T0 increases but at the same time ∆y decreases,
and the net effect is that the ratio Pr/Pc decreases. For the region in E that
we have studied here we always have Pr/Pc > 10 which justifies neglecting
conductivity.

4 Emittance blow-up of the primary beam

4.1 Emittance blow-up due to a thin window

The increase of the beam emittance when passing a thin window is a well
understood process (see e.g. [13]). The scattering of the beam increases the
angular spread of the beam which through filamentation results in an increased
emittance

E = E0 + ∆E = E0 +
π

2
βT 〈θ2〉. (30)

Here E0 is the initial emittance and βT the Twiss value in the plane of the
emittance at the thin window. The average square scattering angle will depend
on the characteristics of the foil and the beam and is usually derived using
formulas based on the Molière theory for multiple Coulomb scattering [15].
The emittance blow up due to the wire scanner device can be evaluated using
the same formalism as the wire can be pictured as a virtual foil which thickness
depends on the velocity and shape of the wire and the velocity of the beam.
For the case of a wire with a circular cross section in a synchrotron with a
revolution time of τ0 (at β = 1) the virtual foil thickness (vft) can be written
as

zvft =
(2r)2πβ

4vτ0

. (31)

4.2 Scattering theory

For small deflection angles a good approximation for the average root mean
square scattering angle is given by [16,17]

θ0 =
13.6 MeV

βpc
Q

√
z

X0

(
1 + 0.038 ln

(
z

X0

))
, (32)
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where p, βc and Q are momentum, velocity and charge number of the incident
particles and z

X0
is the thickness of the scattering medium in radiation lengths

(z being the coordinate along the beam-line). However, the formula is only
accurate to about 11% or better for 1×10−3 < z

X0
< 100. For a typical wire

scanner with zvft according to Eq. (31),
zvft

X0
is much smaller than 1×10−3.

Consequently, we are for e.g. the CERN-CPS wire scanners left in a situation
in between single Coulomb scattering and multiple scattering. We can get
an idea of the order of magnitude if we assume that we are dealing with
single Rutherford scattering events and that outside the atomic radius there
is no interaction between the primary particle and the scattering centre. If
for a numerical example we take the parameters in Tab. 2 at a kinetic proton
beam energy of 1 GeV this approach gives a root mean square scattering
angle of typically a few 1×10−11 radians while a multiple scattering approach
using Eq. (32) yields a few 1×10−7 radians. The large range spanned by these
two extreme approaches might be of theoretical interest but of no practical
importance in a large physical beam emittance machine where both values
yield an emittance blow-up well below the required precision. An attempt
was done to measure the emittance blow-up in the CERN-CPS caused by
the passage of a scanner wire using a two sweep process on a 500 ms flat-
top of the magnetic cycle. An initial sweep and measurement was followed
approximately 400 ms later by a back-sweep also with a measurement. The
difference in emittance between the first and the second sweep was assumed to
mainly be due to the blow-up in the wire. Earlier experience at the CPS has
shown that this is a reasonable assumption. However, for a physical εh = 30π
mm mrad proton beam at a beam energy of 300 MeV and a wire velocity of
20 m/s the error of the measured “emittance blow-up” was 0.3π mm mrad
which is insuficient to separate between the two discussed approximations for
the scattering process. Planned improvements, in line with findings presented
in this note, for the dedicated low energy wire scanners in the PSB booster
should make that possible.

5 Detection of secondary particles

In section 2 we have shown that a detectable amount of secondary particles are
created by the primary beam when passing the wire of the fast wire scanners.
A detector positioned at a given polar angle with respect to the beam direction
can be used to monitor the number of particles scattered by the wire. If the
angle is of the order of 10 degrees or larger, we know from section 2 that only
nuclear scattering events, both elastic and inelastic, contribute.
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10, 30 and 90 degree (only geometrical effects at 90 degree as the anisotropy effect
of Eq. (33) is zero at 90 degree).

5.1 Effect on the deduced emittance

The detectors occupy a certain space-angle which together with other detector
specific parameters determines the detection efficiency. For a beam which is
large transversely such as the high intensity - low energy proton beam in the
CPS, the space angle will change noticeably as the wire is passing through the
beam.

The secondary particles will be emitted anisotropically with a majority of the
particles going in the forward direction. This anisotropy will have “skewing”
effect on the measured beam profile if the transverse beam size is large. For
a rough estimate of the effect we will assume that the anisotropy is described
by

W (θ) = 1 + cos θ (33)

A simple approach to calculate the size of the combined effect is to divide the
beam into thin slices, calculate the detector efficiency and the resulting number
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of detected particles for each slice and finally compare the initial emittance
with the deduced emittance. Using the wire scanner example from Tab. 2 we
have calculated the influence of the change in space angle and of the particle
shower anisotropy for two wire scanner set-ups. In the first configuration the
detector is positioned in the forward direction 15 cm from the wire at an angle
of 30 degree to the beam axes and in the second configuration with an angle
of 10 degree to the beam axes. The configuration with an angle of 30 degree to
the beam axes is in the PS-complex enforced by the space limitations at the
wire-scanner installations. In our numerical example the beam was initially
assumed to be Gaussian and σ for the measured beam profile was calculated
as

σ2 =

last channel∑
x=first channel

(xi − x)2Ch(xi)

first channel∑
last channel

Ch(xi)
, (34)

where

x =

last channel∑
x=first channel

xiCh(xi)

first channel∑
last channel

Ch(xi)
. (35)

and where Ch(xi) is the number of counts in channel xi.

In Fig. 7 we can see that the deviation form the real beam emittance is, as
expected, increasing with decreasing beam energy. That is to say increasing
with increasing transverse beam size. In Fig. 8 the measured beam profile dur-
ing acceleration of the same beam at 100 MeV and 1.4 GeV are shown for a
detector positioned at 85 degree angle to the beam axes. The beam is transver-
sally larger at 100 MeV and the beam profile is slightly deformed due to the
discussed geometrical effects. The resulting error in the deduced normalised
emittance is small and will in most situations be insignificant. However, it is
interesting to note that for the Gaussian beam shape the deformation of the
beam profile is such that the influence on the deduced emittance goes from
positive values for large angles to negative values for small angles.

5.2 Active sweep range of scanner

The large transverse size of the large emittance beam demand a long active
sweep range for the scanner to i) establish the zero baseline and ii) avoid
acquisition of “cut” profiles. At the CERN-CPS we have measured systematic
differences of up to 10% between different wire scanners measuring the same
beam but at different positions with different centres of the closed orbit. The
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Fig. 8. In the centre of the figure the measured profiles for two beams with the same
normalised emittance at two different energies, 100 MeV and 1.4 GeV, are shown.
The wider profile at 100 MeV is slightly deformed due to geometrical effects. To
the left in the figure a profile truncated at 2σ from the profile centre is shown. The
wire scanner software will for this profile deduce an emittance which is 20% smaller
than the true emittance.

numerical ”simulations” discussed in the previous section confirms that such
large deviations from the original beam emittance easily can be caused by a
large offset of the centre of the profile. In Fig. 8 the measured beam profile at
100 MeV for a beam profile well centred in the wire-scanner sweep range and
for one truncated at 2σ form the beam profile centre are shown. The presently
used wire scanner software will for this profile deduce an emittance which is
20% smaller than the true beam emittance.

6 Discussion

We have presented new simulations for the creation of secondary particles
in a thin carbon wire by a primary proton beam. The derived limits for the
use of wire scanners show that the use of these devices in a low energy (50
MeV - 1 GeV) accelerators with large transverse beam size is fully feasible.
The total deposited energy in the wire increases with decreasing beam energy.
Nevertheless, the wire will not get hotter but rather the opposite due to the
increase of the total heated wire volume as the beam size is usually large at
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lower energies. The fact that a large beam can not be considered as a point
source in relation to the detectors will only have small, and for most mea-
surements, insignificant effect. The emittance blow-up will increase at lower
energies but will for most practical purposes be of little importance. However,
the large beam size requires a long active sweep range of the wire scanners to
avoid cut-off effects which can result in significant deviations of the measured
emittance from the true beam emittance.
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