1,624 research outputs found

    Ising Universality in Three Dimensions: A Monte Carlo Study

    Full text link
    We investigate three Ising models on the simple cubic lattice by means of Monte Carlo methods and finite-size scaling. These models are the spin-1/2 Ising model with nearest-neighbor interactions, a spin-1/2 model with nearest-neighbor and third-neighbor interactions, and a spin-1 model with nearest-neighbor interactions. The results are in accurate agreement with the hypothesis of universality. Analysis of the finite-size scaling behavior reveals corrections beyond those caused by the leading irrelevant scaling field. We find that the correction-to-scaling amplitudes are strongly dependent on the introduction of further-neighbor interactions or a third spin state. In a spin-1 Ising model, these corrections appear to be very small. This is very helpful for the determination of the universal constants of the Ising model. The renormalization exponents of the Ising model are determined as y_t = 1.587 (2), y_h = 2.4815 (15) and y_i = -0.82 (6). The universal ratio Q = ^2/ is equal to 0.6233 (4) for periodic systems with cubic symmetry. The critical point of the nearest-neighbor spin-1/2 model is K_c=0.2216546 (10).Comment: 25 pages, uuencoded compressed PostScript file (to appear in Journal of Physics A

    Tissue-specific calibration of extracellular matrix material properties by transforming growth factor-beta and Runx2 in bone is required for hearing

    Get PDF
    Publisher version: http://www.nature.com/embor/journal/v11/n10/full/embor2010135.htmlDA - 20100917 IS - 1469-3178 (Electronic) IS - 1469-221X (Linking) LA - ENG PT - JOURNAL ARTICLEDA - 20100917 IS - 1469-3178 (Electronic) IS - 1469-221X (Linking) LA - ENG PT - JOURNAL ARTICLEDA - 20100917 IS - 1469-3178 (Electronic) IS - 1469-221X (Linking) LA - ENG PT - JOURNAL ARTICLEPhysical cues, such as extracellular matrix stiffness, direct cell differentiation and support tissue-specific function. Perturbation of these cues underlies diverse pathologies, including osteoarthritis, cardiovascular disease and cancer. However, the molecular mechanisms that establish tissue-specific material properties and link them to healthy tissue function are unknown. We show that Runx2, a key lineage-specific transcription factor, regulates the material properties of bone matrix through the same transforming growth factor-beta (TGFbeta)-responsive pathway that controls osteoblast differentiation. Deregulated TGFbeta or Runx2 function compromises the distinctly hard cochlear bone matrix and causes hearing loss, as seen in human cleidocranial dysplasia. In Runx2(+/-) mice, inhibition of TGFbeta signalling rescues both the material properties of the defective matrix, and hearing. This study elucidates the unknown cause of hearing loss in cleidocranial dysplasia, and demonstrates that a molecular pathway controlling cell differentiation also defines material properties of extracellular matrix. Furthermore, our results suggest that the careful regulation of these properties is essential for healthy tissue functio

    Search for {\eta}'(958)-nucleus bound states by (p,d) reaction at GSI and FAIR

    Get PDF
    The mass of the {\eta}' meson is theoretically expected to be reduced at finite density, which indicates the existence of {\eta}'-nucleus bound states. To investigate these states, we perform missing-mass spectroscopy for the (p, d) reaction near the {\eta}' production threshold. The overview of the experimental situation is given and the current status is discussed.Comment: 6 pages, 3 figures; talk at II Symposium on applied nuclear physics and innovative technologies, September 24th - 27th, 2014, Jagiellonian University, Krak\'ow Poland; to appear in Acta Physica Polonica

    Design of a Polarised Positron Source Based on Laser Compton Scattering

    Full text link
    We describe a scheme for producing polarised positrons at the ILC from polarised X-rays created by Compton scattering of a few-GeV electron beam off a CO2 or YAG laser. This scheme is very energy effective using high finesse laser cavities in conjunction with an electron storage ring.Comment: Proposal submitted to the ILC workshop, Snowmass 2005. v2: note number adde

    Spectroscopy of ηâ€Č\eta'-nucleus bound states at GSI and FAIR --- very preliminary results and future prospects ---

    Get PDF
    The possible existence of \eta'-nucleus bound states has been put forward through theoretical and experimental studies. It is strongly related to the \eta' mass at finite density, which is expected to be reduced because of the interplay between the UA(1)U_A(1) anomaly and partial restoration of chiral symmetry. The investigation of the C(p,d) reaction at GSI and FAIR, as well as an overview of the experimental program at GSI and future plans at FAIR are discussed.Comment: 7 pages, 3 figures; talk at the International Conference on Exotic Atoms and Related Topics (EXA2014), Vienna, Austria, 15-19 September 2014. in Hyperfine Interactions (2015

    Development and Test Results of a low-ÎČ\beta Quadrupole Model for the Large Hadron Collider

    Get PDF
    A 1-m model of the high gradient 70 mm aperture superconducting low-b quadrupoles for the Large Hadron Collider (LHC) has been developed. A field gradient of 250 T/m at 1.9 K has been achieved with a peak field of 10 T in the coil. This paper describes development of the first model magnet and presents the test results

    Atmospheric Muon Flux at Sea Level, Underground, and Underwater

    Get PDF
    The vertical sea-level muon spectrum at energies above 1 GeV and the underground/underwater muon intensities at depths up to 18 km w.e. are calculated. The results are particularly collated with a great body of the ground-level, underground, and underwater muon data. In the hadron-cascade calculations, the growth with energy of inelastic cross sections and pion, kaon, and nucleon generation in pion-nucleus collisions are taken into account. For evaluating the prompt muon contribution to the muon flux, we apply two phenomenological approaches to the charm production problem: the recombination quark-parton model and the quark-gluon string model. To solve the muon transport equation at large depths of homogeneous medium, a semi-analytical method is used. The simple fitting formulas describing our numerical results are given. Our analysis shows that, at depths up to 6-7 km w. e., essentially all underground data on the muon intensity correlate with each other and with predicted depth-intensity relation for conventional muons to within 10%. However, the high-energy sea-level data as well as the data at large depths are contradictory and cannot be quantitatively decribed by a single nuclear-cascade model.Comment: 47 pages, REVTeX, 15 EPS figures included; recent experimental data and references added, typos correcte

    Superconductivity in the YIr2Si2 and LaIr2Si2 Polymorphs

    Full text link
    We report on existence of superconductivity in YIr2Si2 and LaIr2Si2 compounds in relation to crystal structure. The two compounds crystallize in two structural polymorphs, both tetragonal. The high temperature polymorph (HTP) adopts the CaBe2Ge2-structure type (space group P4/nmm) while the low temperature polymorph (LTP) is of the ThCr2Si2 type (I4/mmm). By studying polycrystals prepared by arc melting we have observed that the rapidly cooled samples retain the HTP even at room temperature (RT) and below. Annealing such samples at 900C followed by slow cooling to RT provides the LTP. Both, the HTP and LTP were subsequently studied with respect to magnetism and superconductivity by electrical resistivity, magnetization, AC susceptibility and specific heat measurements. The HTP and LTP of both compounds respectively, behave as Pauli paramagnets. Superconductivity has been found exclusively in the HTP of both compounds below Tsc (= 2.52 K in YIr2Si2 and 1.24 K in LaIr2Si2). The relations of magnetism and superconductivity with the electronic and crystal structure are discussed with comparing experimental data with the results of first principles electronic structure calculations

    Imaging-guided chest biopsies: techniques and clinical results

    Get PDF
    Background This article aims to comprehensively describe indications, contraindications, technical aspects, diagnostic accuracy and complications of percutaneous lung biopsy. Methods Imaging-guided biopsy currently represents one of the predominant methods for obtaining tissue specimens in patients with lung nodules; in many cases treatment protocols are based on histological information; thus, biopsy is frequently performed, when technically feasible, or in case other techniques (such as bronchoscopy with lavage) are inconclusive. Results Although a coaxial system is suitable in any case, two categories of needles can be used: fine-needle aspiration biopsy (FNAB) and core-needle biopsy (CNB), with the latter demonstrated to have a slightly higher overall sensitivity, specificity and accuracy. Conclusion Percutaneous lung biopsy is a safe procedure even though a few complications are possible: pneumothorax, pulmonary haemorrhage and haemoptysis are common complications, while air embolism and seeding are rare, but potentially fatal complications

    Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.

    Get PDF
    The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of ÎČ-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible ÎČ-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation
    • 

    corecore