757 research outputs found

    Numerical computation of the beta function of large N SU(N) gauge theory coupled to an adjoint Dirac fermion

    Full text link
    We use a single site lattice in four dimensions to study the scaling of large N Yang-Mills field coupled to a single massless Dirac fermion in the adjoint representation. We use the location of the strong to weak coupling transition defined through the eigenvalues of the folded Wilson loop operator to set a scale. We do not observe perturbative scaling in the region studied in this paper. Instead, we observe that the scale changes very slowly with the bare coupling. The lowest eigenvalue of the overlap Dirac operator is another scale that shows similar behavior as a function of the lattice coupling. We speculate that this behavior is due to the beta function appoaching close to a zero.Comment: 16 pages, 9 figures, revised version DOES NOT match the published version in Physical Review

    iTIMP: isotriplet Technicolor Interacting Massive Particle as Dark Matter

    Get PDF
    We suggest that a weak isotriplet composite scalar possessing an unbroken U(1) global symmetry naturally arises in technicolor models leading to an interesting type of dark matter candidate: the iTIMP. We propose explicit models of the iTIMP, study earth based constraints and suggest possible collider signals.Comment: 4 pages, 4 Figures, added content, added reference

    Natural fourth generation of leptons

    Full text link
    We consider implications of a fourth generation of leptons, allowing for the most general mass patterns for the fourth generation neutrino. We determine the constraints due to the precision electroweak measurements and outline the signatures to search for at the LHC experiments. As a concrete framework to apply these results we consider the minimal walking technicolor (MWTC) model where the matter content, regarding the electroweak quantum numbers, corresponds to a fourth generation.Comment: 21 pages, 11 figures, 1 table; version to appear in JHE

    Minimal Flavor Constraints for Technicolor

    Get PDF
    We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and masses of the lightest spin-one resonances. Our analysis is applicable to any four and higher dimensional extension of the standard model reducing to models of dynamical electroweak symmetry breaking.Comment: 26 pages, we have added appendix C and some references and corrected some typo

    Conformal Window of Gauge Theories with Four-Fermion Interactions and Ideal Walking

    Full text link
    We investigate the effects of four-fermion interactions on the phase diagram of strongly interacting theories for any representation as function of the number of colors and flavors. We show that the conformal window, for any representation, shrinks with respect to the case in which the four-fermion interactions are neglected. The anomalous dimension of the mass increases beyond the unity value at the lower boundary of the new conformal window. We plot the new phase diagram which can be used, together with the information about the anomalous dimension, to propose ideal models of walking technicolor. We discover that when the extended technicolor sector, responsible for giving masses to the standard model fermions, is sufficiently strongly coupled the technicolor theory, in isolation, must have an infrared fixed point for the full model to be phenomenologically viable. Using the new phase diagram we show that the simplest one family and minimal walking technicolor models are the archetypes of models of dynamical electroweak symmetry breaking. Our predictions can be verified via first principle lattice simulations.Comment: RevTeX4, 22 pages, 16 figure

    Towards Open Information Management in Health Care

    Get PDF
    The utilization of information technology as tool in health care is increasing. The main benefits stem from the fact that information in electronic form can be transferred to different locations rapidly and from the possibility to automate certain information management tasks. The current technological approach for this automation relies on structured, formally coded representation of information. We discuss the limitations of the current technological approach and present a viewpoint, grounded on previous research and the authors’ own experiences, on how to progress. We present that a bottleneck in the automation of the management of constantly evolving clinical information is caused by the fact that the current technological approach requires the formal coding of information to be static in nature. This inherently hinders the expandability of the information case space to be managed. We present a new paradigm entitled open information management targeting unlimited case spaces. We also present a conceptual example from clinical medicine demonstrating open information management principles and mechanisms

    The Stefan-Boltzmann law in a small box and the pressure deficit in hot SU(N) lattice gauge theory

    Get PDF
    The blackbody radiation in a box L^3 with periodic boundary conditions in thermal equilibrium at a temperature T is affected by finite-size effects. These bring about modifications of the thermodynamic functions which can be expressed in a closed form in terms of the dimensionless parameter LT. For instance, when LT~4 - corresponding to the value where the most reliable SU(N) gauge lattice simulations have been performed above the deconfining temperature T_c - the deviation of the free energy density from its thermodynamic limit is about 5%. This may account for almost half of the pressure deficit observed in lattice simulations at T~ 4 T_c.Comment: 9 pages, 2 figures v2:a side remark on the final result and references adde

    Seasonal cycle of benthic denitrification and DNRA in the aphotic coastal zone, northern Baltic Sea

    Get PDF
    Current knowledge on the seasonality of benthic nitrate reduction pathways in the aphotic, density stratified coastal zone of the Baltic Sea is largely based on data from muddy sediments, neglecting the potential contribution of sandy sediments. To gain a more comprehensive understanding of seasonality in this part of the Baltic Sea coast, we measured rates of benthic denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA) monthly in the ice-free period of 2016 in both sandy and muddy aphotic sediments, northwestern Gulf of Finland. No anammox was observed. The seasonal cycle of denitrification in both sediment types was related to the hydrography-driven development of bottom water temperature. The seasonal cycle of DNRA was less clear and likely connected to a combination of bottom water temperature, carbon to nitrogen ratio, and substrate competition with denitrification. Denitrification and DNRA rates were 50-80 and 20% lower in the sandy than in the muddy sediment. The share of DNRA in total nitrate reduction, however, was higher in the sandy than in the muddy sediment, being (by similar to 50%) the highest DNRA share in sandy sediments so far measured. Our data add to the small pool of published studies showing significant DNRA in both cold and/or sandy sediments and suggest that DNRA is currently underestimated in the Baltic coastal nitrogen filter. Our results furthermore emphasize that the various environmental conditions of a coastal habitat (light regime, hydrography, and geomorphology) affect biogeochemical element cycling and thus need to be considered in data interpretation.Peer reviewe

    Chiral properties of SU(3) sextet fermions

    Get PDF
    SU(3) gauge theory with overlap fermions in the 2-index symmetric (sextet) and fundamental representations is considered. A priori it is not known what the pattern of chiral symmetry breaking is in a higher dimensional representation although the general expectation is that if two representations are both complex, the breaking pattern will be the same. This expectation is verified for the sextet at N_f = 0 in several exact zero mode sectors. It is shown that if the volume is large enough the same random matrix ensemble describes both the sextet and fundamental Dirac eigenvalues. The number of zero modes for the sextet increases approximately 5-fold relative to the fundamental in accordance with the index theorem for small lattice spacing but zero modes which do not correspond to integer topological charge do exist at larger lattice spacings. The zero mode number dependence of the random matrix model predictions correctly match the simulations in each sector and each representation.Comment: 38 pages (12 pages text and gazillion tables/figures), minor modification, references adde
    corecore