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Abstract
We analyze the constraints on the the vacuum polarization of the standard model gauge bosons

from a minimal set of flavor observables valid for a general class of models of dynamical elec-

troweak symmetry breaking. We will show that the constraints have a strong impact on the

self-coupling and masses of the lightest spin-one resonances. Our analysis is applicable to any

four and higher dimensional extension of the standard model reducing to models of dynamical

electroweak symmetry breaking.
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I. MINIMAL MODELS OF (EXTENDED) TECHNICOLOR

Dynamical electroweak symmetry breaking constitutes one of the best motivated ex-

tensions of the standard model (SM) of particle interactions.

Studies of the dynamics of gauge theories featuring fermions transforming according

to higher dimensional representations of the new gauge group has led to several phe-

nomenological possibilities [1, 2, 3, 4, 5] such as (Next) Minimal Walking Technicolor

(MWT) [6] and Ultra Minimal Walking Technicolor (UMT) [7]. We will collectively refer

to them as minimal models of technicolor. In [8] it was launched a coherent program

to investigate different signals of minimal models of technicolor at the Large Hadron

Collider experiment at CERN. Here, we also investigated in much detail, among other

things also the production of the composite Higgs in association with a SM gauge boson

suggested first in [9]. An interesting analysis relevant for the LHC phenomenology of

low scale technicolor [10] has appeared [11].

Walking dynamics for breaking the electroweak symmetry was introduced in [12,

13, 14, 54]. It is worth noting that higher dimensional representations have been used

earlier in particle physics phenomenology. Time honored examples are grand unified

theories. The possibility of unifying the SM gauge interactions within a technicolor

framework has been recently addressed within minimal technicolor models in [15]. The

discovery [1] that theories with fermions transforming according to higher dimensional

representations develop an infrared fixed point (IRFP) for an extremely small number of

flavors and colors is intriguing. The dynamics of these theories is being investigated using

several analytic methods not only for SU(N) gauge groups [1, 3, 16] but also for SO(N)

and Sp(2N) gauge groups [17]. A better knowledge of the gauge dynamics of several

nonsupersymmetric gauge theories has been useful to construct explicit UV-complete

models able to break the electroweak symmetry dynamically while naturally featuring

small contributions to the electroweak precision parameters [6, 18, 19, 20, 21]. These

models are economical since they require the introduction of a very small number of

underlying elementary fields and can feature a light composite Higgs [2, 3, 22]. Recent

analyses lend further support to the latter observation [23, 24, 25]. The models feature also

explicit dark matter candidates [7, 26, 27, 28] and associated interesting phenomenology

[29, 30]. Moreover, extensions of the SM featuring a new underlying asymptotic free
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gauge theory are naturally unitary at any arbitrary high energy scale. This strongly

increases the theoretical appeal of these extensions. Another important aspect is that the

underlying gauge theories can already be tested via first principle lattice computations

[31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. Effective approaches, i.e. four and higher

dimensional ones are to be considered as approximations of an underlying dynamics a la

Technicolor or of an unspecified dynamics, see [43, 44, 45, 46] for recent efforts.

Whatever is the dynamical extension of the SM it will, in general, modify the vacuum

polarizations of the SM gauge bosons. LEP I and II data provided direct constraints

on these vacuum polarizations [47, 48, 49]. In this work we show that we can use flavor

physics to provide stronger constraints than previously obtained for some of the precision

observables. Our results are in agreement with the analysis made in [50, 51].

We are not attempting to provide a full theory of flavor but merely estimate the impact

of a new dynamical sector, per se, on well known flavor observables. We will, however,

assume that whatever is the correct mechanism behind the generation of the mass of the

SM fermions it will lead to SM type Yukawa interactions [52]. This means that we will

constrain models of technicolor with extended technicolor interactions [53, 54] entering

in the general scheme of minimal flavor violation theories [55]. To be specific we will

show that it is possible to provide strong constraints on the technirho and techniaxial self-

couplings and masses for a general class of models of dynamical electroweak symmetry

breaking. Our results can be readily applied to any extension of the SM featuring new

heavy spin-one states. In particular it will severely limit the possibility to have very

light spin-one resonances to occur at the LHC even if the underlying gauge theory has

vanishing S-parameter.

II. MINIMAL ∆F = 2 FLAVOR CORRECTIONS FROM TECHNICOLOR

Our goal is to compute the minimal contributions, i.e. coming just from the technicolor

sector, for processes in which the flavor number F changes by two units, i.e. ∆F = 2.

Here we consider F to be either the strange or the bottom number. Besides the intrinsic

technicolor corrections to flavor processes one has also the corrections stemming out from

extended technicolor models which are directly responsible for providing mass to the SM

fermions. We will make the assumption, strongly supported by experiments, that if this

3



extended model exists it leads to a Yukawa sector similar to the SM one. It is, hence, by

construction an extended technicolor model implementing the minimal flavor violation

[55] idea. To be more specific we will determine the effects of heavy spin-one resonances

mixing with the SM gauge bosons on flavor observables. We use the effective Lagrangian

framework presented in [6] according to which the relevant interactions of the composite

Higgs sector to the SM quarks up and down reads:

L
quark
yukawa =

√
2 mui

v
Vi j · ūRiπ

+dLj −

√
2 mdi

v
V∗ji · d̄Riπ

−uLj + h.c. , (1)

where mui, (ui = u, c, t) and mdi, (di = d, s, b) are respectively the up and down quark masses

of the ith generation. Vi j is the i, j element of the Cabibbo-Kobayashi-Maskawa (CKM)

matrix. This is our starting point which will allow us to compute the ∆F = 2 processes.

We have also checked our results using the Hidden Local Gauge Symmetry [56] version

of [6].

(a) (b)

(c) (d)

FIG. 1: Box diagrams for ∆S = 2 annihilation processes. To obtain the ∆B = 2 process, we should

simply rename s with b and d with q (q = d, s) in the various diagrams.

The diagrams contributing to the ∆F = 2 process are shown in Fig. 1. They amount to

the annihilation process [80].
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The final contribution to the ∆F = 2 amplitude is:

iM(∆S = 2) = 2 ×
[
iM(a)

� + iM(b)
� + iM(c)

� + iM(d)
�

]
= 2 ×

(
i

gEW
√

2

)4

×
−i

16π2M2
W

×

 ∑
i, j=u,c,t

λiλ jE(mi,m j,MV,MA)

 ×Q∆F=2 , (2)

where mi, (i = u, c, t) indicates the ui mass while MV,MA are respectively the mass of the

lightest techni-vector meson and techni-axial vector one. Q∆F=2 is short for

Q∆F=2 =


(s̄LγµdL)(s̄LγµdL) for F = S ,

(b̄LγµqL)(b̄LγµqL) for F = B .

(3)

We introduced the quantity λi:

λi =


VidV∗is for K0

− K̄0 system ,

ViqV∗ib for B0
q − B̄0

q system ,

(4)

encoding the information contained in the CKM matrix. Moreover, E(mi,m j,MV,MA)

keeps track of the technicolor-modified gauge bosons propagators. Its cumbersome full

expression is reported in the technical appendix.

It is convenient to rewrite the induced ∆F = 2 term of the Lagrangian as follows:

L
∆F=2
eff = −

G2
FM2

W

4π2 · A(aV, aA) ·Q∆F=2 , (5)

with

A(aV, aA) ≡
∑

i, j=u,c,t

[
λiλ j · E(ai, a j, aV, aA)

]
. (6)

Here we have expressed all the quantities by means of the following ratios

aα ≡ m2
α/M

2
W , (α = i, j) and av ≡M2

v/M
2
W , (v = V,A) . (7)

Indicating with gEW the weak-coupling constant and g̃ the coupling constant governing

the massive spin-one self interactions and by expanding up to the order in O(g4
EW/g̃4) one

can rewrite the previous expression as:

E(ai, a j, aV, aA) = E0(ai, a j) +
g2

EW

g̃2 ∆E(ai, a j, aV, aA) . (8)
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The explicit expressions can be found in the appendix and are consistent with the results

in [57]. The SM contribution is fully contained in E0 and the technicolor one appear first

in ∆E. The latter can be divided into a vector and an axial-vector contribution as follows:

∆E(ai, a j, aV, aA) = h(ai, a j, aV) + (1 − χ)2
· h(ai, a j, aA) , (9)

where the expressions for h(ai, a j, av) are reported in the appendix. The quantity χ was

introduced first in [18, 58]. Subsequently the associated effective Lagrangian [18, 58] was

extended to take into account terms involving the space-time εµνργ tensor, and topological

terms, in [59] for any technicolor models for which the global symmetry group is either

SU(N f ) × SU(N f ) or SU(2N f ) breaking spontaneously respectively to SU(N f ) or Sp(2N f ),

and N f is the number of techniflavors [81].

The axial-vector decay constant is directly proportional to the quantity (1 − χ)2. The

vector and axial decay constant are:

f 2
V =

M2
V

g̃2 f 2
A =

M2
A

g̃2 (1 − χ)2 . (10)

Note also that for χ = 2 and χ = 0 the vector and axial-vector meson contributions are

identical while for χ = 1 only the direct technirho contribution survives. The limit χ = 0

and MV = MA = M corresponds to the custodial technicolor model introduced in [18, 58, 59].

In this limit the S-parameter vanishes identically because is protected by a new symmetry.

We also write:

A(aV, aA) = A0 +
g2

EW

g̃2 · ∆A(aV, aA) . (11)

Upon taking into account the unitarity of the CKM matrix and setting au → 0 one has

A0 = η1 · λ
2
c · Ē0(ac) + η2 · λ

2
t · Ē0(at) + η3 · 2λcλt · Ē0(ac, at) , (12)

and

∆A(aV, aA) = η1 · λ
2
c · ∆Ē(ac, aV, aA) + η2 · λ

2
t · ∆Ē(at, aV, aA) + η3 · 2λcλt · ∆Ē(ac, at, aV, aA) ,

(13)

whereη1,2,3 are the QCD corrections to Ē0 and ∆Ē. The explicit expressions for the functions

Ē and ∆Ē various expressions are provided in the appendix. The expressions simplify for
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the ∆Ē in the relevant limit av � at, ac:

∆Ē(ac, at, aV, aA) '
(
7.28 × 10−5

)
×

[
1
aV

+
(1 − χ)2

aA

]
, (14)

∆Ē(ac, aV, aA) '
(
3.13 × 10−8

)
×

[
1
aV

+
(1 − χ)2

aA

]
(15)

∆Ē(at, aV, aA) ' (−3.30) ×
[

1
aV

+
(1 − χ)2

aA

]
. (16)

De facto, the formulae above are a reasonable approximation for MV,A > 400 GeV. The

numerical prefactors are independent of the specific model of dynamical electroweak

symmetry breaking but depend on the SM values for ac and at.

III. MINIMAL FLAVOR CONSTRAINTS

We can now compare the generic technicolor effects encoded in Eq.(5) and due primar-

ily to the techni-vector and axial vector contributions with the CP-violation parameter εK

in the K0 meson system as well as the mass difference of the K0
− K̄0 and B0

q − B̄0
q mesons

systems with q = d, s.

We recall that the absolute value of the CP-violation parameter in the K0
− K̄0 system

is given by [61]:

(|εK|)full =
G2

FM2
W

12
√

2π2
×

[ MK

∆MK

]
exp.
× BK f 2

K × [−ImA(aV, aA)] . (17)

The meson mass difference in the Q0
− Q̄0 , Q = (K,Bd,Bs) system is given by

(
∆MQ

)
full
≡ 2 ·

∣∣∣〈Q̄0
| − L

∆F=2
eff |Q0

〉

∣∣∣ =
G2

FM2
W

6π2 · f 2
Q ·MQ × BQ × |A(aV, aA)| , (18)

where fQ is the decay constant of the Q-meson and MQ is its mass. BQ is identified

with the QCD bag parameter correcting for possible deviations of the true value of the

matrix elements 〈Q̄0
| −L

∆F=2
eff
|Q0
〉 from its approximate value computed using the vacuum

insertion approximation. This bag parameter is an intrinsic QCD contribution and we

assume that the technicolor sector does not contribute to the bag parameter [82]. There are

many estimates available for the bag parameters, such as the ones from the lattice [62, 63],

1/N-approximation [64], etc. In this paper we use, for definitiveness, the values quoted
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GF 1.1664 × 10−5 GeV−2 Ref. [66]

MW 80.398 GeV Ref. [66]

mt 161.3 ± 1.8 GeV MS mass in Ref. [66]

mc 1.274+0.036
−0.045 GeV MS mass in Ref. [66]

MK 497.61 ± 0.02 MeV Ref. [66]

∆MK 5.292 ± 0.0009 ns−1 Ref. [66]

|εK| (2.229 ± 0.012) × 10−3 Ref. [66]

fK 155.5 MeV Ref. [66]

BK 0.72 ± 0.040 Ref. [65]

MBd 5279.5 ± 0.3 MeV Ref. [66]

∆MBd 0.507 ± 0.005 ps−1 Ref. [66]

fBd

√
BBd 225 ± 35 MeV Ref. [65]

MBs 5366.3 ± 0.6 MeV Ref. [66]

∆MBs 17.77 ± 0.10 ps−1 Ref. [66]

fBs

√
BBs 270 ± 45 MeV Ref. [65]

TABLE I: Fermi constant (GF), W± boson mass (MW), top quark and charm quark masses in the

MS-scheme (mt,mc), meson masses (MK,MBq), indirect CP violation parameter (εK), meson mass

difference (∆MK,∆MBq), decay constants ( fK, fBq) and Bag parameters (BK,BBq). We show the

central value for GF,MW, fK.

in [65]. The experimental values of GF,MW, fQ,MQ,∆MQ and the bag parameter BQ are

shown in Table I.

It is convenient to define the following quantities:

δε ≡
g2

EW

g̃2 ·
Im∆A(aV, aA)

ImA0
, (19)

δMQ ≡
g2

EW

g̃2 ·
∆A(aV, aA)

A0
. (20)

Using these expressions we write (|εK|)full and (∆MQ)full as

(|εK|)full = (|εK|)SM × (1 + δε) ,
(
∆MQ

)
full

=
(
∆MQ

)
SM
×

∣∣∣1 + δMQ

∣∣∣ . (21)
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Of course, (|εK|)SM and
(
∆MQ

)
SM

are the SM expressions encoded in:

(|εK|)SM =
G2

FM2
W

12
√

2π2
×

[ MK

∆MK

]
exp.
× BK f 2

K × [−ImA0] , (22)

(
∆MQ

)
SM

=
G2

FM2
W

6π2 · f 2
Q ·MQ × BQ × |A0| . (23)

They assume the values:

(|εK|)SM = (2.08+0.14
−0.13) × 10−3 , (24)

(∆MK)SM = (3.55+1.09
−1.00) ns−1 , (25)(

∆MBd

)
SM = (0.56+0.19

−0.16) ps−1 , (26)(
∆MBs

)
SM = (17.67+6.38

−5.40) ps−1 . (27)

To evaluate the expressions above we used the values of GF,MW,MQ,∆MK, fQ,BQ in Table I.

We also used the CKM matrix elements expressed in the Wolfenstein parameterization

[67] and reported in Appendix B. We also need the QCD correcting factors η1,2,3 to evaluate

A0. Following [65] these are:

η1 = (1.44 ± 0.35) ·
(1.3 GeV

mc

)1.1

, η2 = 0.57 , η3 = 0.47 ± 0.05 , (28)

for the kaon system while we also need ηB = 0.55 [65], corresponding to η2, for the system

containing a bottom quark.

Given that

Ē0(ac) ' 2.51 × 10−4 , Ē0(at) ' 2.27 , Ē0(ac, at) ' 2.22 × 10−3 , (29)

and that the CKM derived quantities λ2
c , λ

2
t , λcλt are roughly of the same order for the B0

q

system we neglected the η1Ē0(ac) and η3Ē0(ac, at) terms when providing the estimates for

this system. The uncertainty in Eqs (24) -(27) were deduced by propagating the theoretical

ones plaguing η1,3, BK, fBq and
√

BBq [61, 65].

We are now ready to compare the SM value given in Eq.(24) with the experimental one

in Table I and read off the constrain on δε which is:

δε =
(
7.05+7.93

−7.07

)
× 10−2 (68% C.L.) . (30)
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In order to compare the corrections associate to the kaon mass ∆MK we formally separate

the short distance contribution from the long distance one and write

∆MK = (∆MK)SD + (∆MK)LD . (31)

Here (∆MK)SD encodes the short distance contribution which must be confronted with the

technicolor one Eq.(20). The SM contribution to the short distance kaon mass difference

evaluated in Eq.(25) is circa 70% of (∆MK)exp. The long distance contribution, (∆MK)LD,

corresponds to the exchange of the light pseudoscalar mesons and its contribution may

yield the remaining 30% of the experimental value (∆MK)exp. [61]. However, it is difficult

to pin-point the (∆MK)LD contribution [61, 68] and hence we can only derive very weak

constraints from δMK . In fact we simply require that

(∆MK)SD = (∆MK)SM |1 + δMK | ≤ (∆MK)exp. . (32)

This means that:

|1 + δMK | ≤ 2.08 (68% C.L.) . (33)

On the other hand the short distance contribution dominates the B0
q − B̄0

q mass differ-

ence [68] yielding the following constraints:

|1 + δMBd | = 0.91+0.38
−0.24 (68% C.L.) , (34)

|1 + δMBs | = 1.01+0.44
−0.27 (68% C.L.) . (35)

These constitute the minimal flavor constraints on any model of dynamical electroweak

symmetry breaking. On the top of these corrections one has the ones coming from a given

explicit extended technicolor model. Typically these models are hard to construct and,

hence, to constrain. On the other hand assuming the existence of a successful extension,

meaning that it provides the correct masses to the SM fermions and no direct flavor

changing neutral currents effects, one has still to consider the experiment constraints

above on the technicolor sector we have just computed.

Although the analytic formulae for ∆A are valid for any value assumed by the vector

meson masses they simplify considerably in the limit M2
V,M

2
A � m2

t ,m
2
c . We term it the
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intermediate vector limit, iVL, and define the associated quantities with δ(iVL)
ε , δ(iVL)

MQ
. They

read:

δ(iVL)
ε ' −2.14 ×W , δ(iVL)

MK
' −0.026 ×W , δ(iVL)

Bd
= δ(iVL)

Bs
' −2.90 ×W , (36)

where the numerical values depend on ac , at , η1,2,3 , ηB , λi with

W =
g2

EW

2g̃2

[
1
aV

+
(1 − χ)2

aA

]
, W ≡

g2
EWM2

W

2

[
Π′′33(0)

]
, (37)

and Π33 the W3W3 corrections to the vacuum polarization due to the exchange of the new

heavy vectors. The Y parameter is defined as [48]

Y ≡
g′2EWM2

W

2

[
Π′′BB(0)

]
(38)

and for a generic minimal model of technicolor, i.e. in which the techniquarks are not

charged under ordinary color interactions, we have:

Y =
g′2EW

2g̃2

[
1 + 4y2

aV
+

(1 − χ)2

aA

]
. (39)

The flavor constraints on the W parameter, as we shall see, are important and will provide

tight constraints on the underlying technicolor dynamics, or alike models. We will then

compare the limits with the ones deriving from LEP II data, i.e. W = (−0.2 ± 0.8) × 10−3

and Y = (0.0 ± 1.2) × 10−3 corresponding to the 68% C.L. constraints for a heavy Higgs in

[48]. As a consistency check one can see that the expression for W and Y coincide with

the ones derived in [69].

IV. CONSTRAINING MODELS OF DYNAMICAL ELECTROWEAK SYMMETRY BREAK-

ING

We will now use the minimal flavor experimental information to reduce the parameter

space of a general class of models of dynamical electroweak symmetry breaking.
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A. Scaled up version of QCD: The running case

If the underlying TC theory is QCD like we can impose the standard 1st and 2nd

Weinberg’s sum rules as shown in [6, 18, 58, 59]

1st WSR : f 2
V − f 2

A = f 2
π =

(
vEW
√

2

)2

, (40)

2nd WSR : f 2
V M2

V − f 2
A M2

A = 0 . (41)

with fV and fA the vector and axial decay constants. One obtains exactly the expression

in [6] via the re-definition Fi =
√

2 fi , (i = V,A, π). Using the explicit expressions of the

decay constants in terms of the coupling g̃ and vector masses provided in [6, 18, 58, 59]

and imposing the above sum rules we derive:

1
aV

=
g2

EWS
16π

−
1
aA

(≥ 0) , (42)

with the S-parameter [47] reading [6, 18, 58, 59]:

S ≡ 8π
[

f 2
V

M2
V

−
f 2
A

M2
A

]
=

8π
g̃2

[
1 − (1 − χ)2

]
. (43)

The condition above yields the following additional constraint for g̃ by simply noting that

the quantity (1 − χ)2 is positive:

g̃ <

√
8π
S
. (44)

The constraints on (MA, g̃) induced by (42) and (44) are stronger, for a given S, than the

ones deriving from flavor experiments and expressed in (30)-(35). This is not surprising

given that in an ordinary technicolor theory the spin-one states are very heavy. However

the situation changes when allowing for a walking behavior.

B. Walking Models

Besides the flavor constraints one has also the ones due to the electroweak precision

measurements [69] as well as the unitarity constraint of WL −WL scattering [70]. We will

consider all of them. As for the technicolor case we reduce the number of independent
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parameters at the effective Lagrangian level via the 1st- and the second modified [18]

Weinberg sum rules which now read [18]

1st WSR : f 2
V − f 2

A = f 2
π =

(
vEW
√

2

)2

, (45)

2nd MWSR : f 2
V M2

V − f 2
A M2

A = a ·
16π2

d(R)
f 4
π , (46)

where a is a number expected to be positive and O(1) [18]. d(R) is the dimension of the

representation of the underlying technifermions as shown in [6]. We have now:

M2
A <

8π f 2
π

S
2 − χ
1 − χ

=
8π f 2

π

S

1 +
1√

1 − g̃2S
8π

 . (47)

In Figure 2, we show the allowed region in the (MA, g̃)-plane after having imposed the

minimal flavor constraints due to the experimental values of |εK| and ∆MQ obtained using

Eqs. (30)-(35) together with the theoretical constraints for g̃,M2
A obtained via Eqs. (44) and

(47). To obtain Fig. 2, we used the expressions for A0 and ∆A(aV, aA) shown respectively

in (12) and (13) in which aV = M2
V/M

2
W reads:

aV =

[
1 −

g̃2

8π
S
]
· aA +

2g̃2

g2
EW

. (48)

We obtained the last expression imposing the first Weinberg sum rule of Eq. (45). Given

that the upper bound for δMK is always larger than the theoretical estimate in the region

MA > 200 GeV we conclude that the ∆MK constraint is not yet very severe and hence it is

not displayed in Fig. 2.

To make the plots we need also the value of the S parameters and hence we analyzed

as explicit example minimal walking technicolor models.

1. Minimal Walking Technicolor

For definitiveness we use for S the naive MWT estimate, i.e. S = 1/(2π) [1, 3] while g̃

is constrained via Eq. (44) to be g̃ < 12.5.

We have plotted the various constraints on the (MA, g̃)-plane for MWT in the upper

and lower left panel of Fig. 2. In the upper (lower) left figure we compare the 68% C.L.

13



(95% C.L.) allowed regions coming from the minimal flavor constraints (the darker region

above the blue-dotted line) with the ones from LEP II data (region above the green-dashed

line). It is clear that the flavor constraints are stronger for the 68% C.L. case but are weaker

for the 95% C.L. one with respect to the constraints from LEP II data.

The region above the straight solid line is forbidden by the condition g̃ < 12.5 while

the region below the black solid curve (on the right corner) by the condition (47) [83].

2. Next to Minimal Walking Technicolor (NMWT)

In this case the naive S is approximately 1/π [1, 3] and the constraint on g̃ from Eq. (44)

yields g̃ < 8.89. We have plotted the various constraints on the (MA, g̃)-plane for NMWT

in the upper and lower right panel of Fig. 2 for the 68% C.L. and 95% C.L. constraints. We

see again that the flavor constraints are stronger for the 68% C.L. case but are weaker for

the 95% C.L. one.

C. Custodial Technicolor

In the limit MA = MV = M and χ = 0 the effective theory acquires a new symmetry

[58, 59]. This new symmetry relates a vector and an axial field and can be shown to work

as a custodial symmetry for the S parameter [58, 59]. The only non-zero electroweak

parameters are now:

W =
g2

EW

g̃2

M2
W

M2 , Y =
g′EW

2

2g̃2

M2
W

M2 (2 + 4y2) . (49)

It was already noted in [69] that a custodial technicolor model cannot be easily achieved

via an underlying walking dynamics and should be interpreted as an independent frame-

work. This is so since custodial technicolor models do not respect the Weinberg’s sum

rules [84]. This symmetry is also present in the BESS models [77, 78, 79] which will,

therefore, be constrained as well. We directly compare in the Fig. 3 the constraints on the

custodial technicolor parameter region (M,g̃) coming from LEP II and flavor constraints

and find a similar trend as for the other cases.
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FIG. 2: The upper and lower left panels represents the allowed region in the (MA, g̃)-plane for

MWT respectively for the 68% C.L. and 95% C.L.. A similar analysis is shown for NMWT in the

right hand upper and lower panels. The region above the straight solid line is forbidden by the

condition g̃ < 12.5 for MWT and g̃ < 8.89 for NMWT while the region below the black solid

curve (on the right corner) by the condition (47). In the two upper (lower) plots the blue dotted

lines correspond to the 68% C.L. (95% C.L.) flavor constraints while the green dashed lines are the

68% C.L. (95% C.L.) from LEP II data. The flavor constraints come only from εK since the ones

from ∆MBq are not as strong.
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FIG. 3: The left (right) panel represents the allowed region in the (MA, g̃)-plane for CT respectively

for the 68% C.L. (95% C.L.). In the two upper (lower) plots the blue dotted lines correspond to

the 68% C.L. (95% C.L.) flavor constraints while the green dashed lines are the 68% C.L. (95% C.L.)

from LEP II data. The flavor constraints come only from εK since the ones from ∆MBq are not as

strong.

V. SUMMARY

Flavor constraints are relevant for models of dynamical electroweak symmetry break-

ing with light spin-one resonances, in fact, any model featuring spin-one resonances with

the same quantum numbers of the SM gauge bosons will have to be confronted with these

flavor constraints. Combining the flavor and LEP II data the new value for W at the one

sigma level is Wavg ' (−1.6+3.7
−3.3) × 10−2.
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APPENDIX A: RELEVANT EXPRESSIONS

We provided the explicit form of each quantity introduced in the main text starting

with:

E0(ai, a j) = −
3
4

h0(ai, a j) −
7
4

( 1
ai − 1

+
1

ai − 1
+ 1

)
+

[
aia j

ai − a j

(
1
4
−

3
2(ai − 1)

)
+

7ai

4(ai − 1)2

]
ln ai

+

[
aia j

a j − ai

(
1
4
−

3
2(a j − 1)

)
+

7a j

4(a j − 1)2

]
ln a j , (A1)

and

h0(ai, a j) =
1

ai − a j

( ai

ai − 1

)2

ln ai −

(
a j

a j − 1

)2

ln a j −
1

ai − 1
+

1
a j − 1

 . (A2)

We also have:

∆E(ai, a j, aV, aA) = h(ai, a j, aV) + (1 − χ)2
· h(ai, a j, aA) , (A3)

where h(ai, a j, av) is given by

h(ai, a j, av) =
a2

i ln ai

(ai − 1)3(ai − a j)(ai − av)
·

[
a2

i −
3
4

a2
i a j − aia j

]
+

a2
j ln a j

(a j − 1)3(a j − ai)(a j − av)
·

[
a2

j −
3
4

aia2
j − aia j

]
+

a2
v ln av

(av − 1)3(av − ai)(av − a j)
·

[
a2

v −
3
4

aia jav − aia j

]
−

1
(ai − 1)(a j − 1)(av − 1)

·

[
1

ai − 1
+

1
a j − 1

+
1

av − 1

]
·

[
1 −

7
4

aia j

]
−

1
(ai − 1)(a j − 1)(av − 1)

·

[7
2
−

27
8

aia j

]
. (A4)

We can now provide the full expression for A(aV, aA)

A(aV, aA) = A0 +
g2

EW

g̃2 · ∆A(aV, aA) . (A5)

Taking into account the unitarity constraint from the CKM matrix and setting au → 0 one

finds:

A0 = η1 · λ
2
c · Ē0(ac) + η2 · λ

2
t · Ē0(at) + η3 · 2λcλt · Ē0(ac, at) , (A6)
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and

∆A(aV, aA) = η1 · λ
2
c · ∆Ē(ac, aV, aA) + η2 · λ

2
t · ∆Ē(at, aV, aA) + η3 · 2λcλt · ∆Ē(ac, at, aV, aA) .

(A7)

where ∆Ē(ai, a j, aV, aA) = ∆Ē(ai, a j, av) + (1 − χ)2∆Ē(ai, a j, aA), etc. η1,2,3 encodes the QCD

corrections for Ē0 and ∆Ē.

Here, Ē0(ai, a j) is given by

Ē0(ai, a j) = lim
au→0

[
E0(ai, a j) − E0(au, a j) − E0(ai, au) + E0(au, au)

]
=

aia j

ai − a j

[
K0(ai) − K0(a j)

]
, (A8)

with

K0(x) =

[
1
4
−

3
2(x − 1)

−
3

4(x − 1)2

]
ln x +

3
4(x − 1)

. (A9)

We also have:

∆Ē(ai, a j, av) = lim
au→0

[
∆E(ai, a j, av) − ∆E(au, a j, av) − ∆E(ai, au, av) + ∆E(au, au, av)

]
=

aia j ·
[
(a j − av)K(ai) + (av − ai)K(a j) + (ai − a j)K(av)

]
(ai − a j)(a j − av)(av − ai)

, (A10)

where

K(x) =
− ln x

(x − 1)3 ·

[
x2
−

3
4

aia j · x − aia j

]
+

1
x − 1

[
1 −

7
4

aia j

] [ 1
ai − 1

+
1

a j − 1
+

1
av − 1

]
+

1
x − 1

[3
2

+
1
8

aia j

]
. (A11)

Moreover

Ē0(ai) ≡ lim
a j→ai

Ē0(ai, a j)

=
3
2

( ai

ai − 1

)3

ln ai +

[
1
4
−

9
4(ai − 1)

−
3

2(ai − 1)2

]
ai , (A12)

∆Ē(ai, aV, aA) ≡ lim
a j→ai

∆Ē(ai, a j, aV, aA) = ∆Ē(ai, aV) + (1 − χ)2∆Ē(ai, aA) , (A13)
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and

∆Ē(ai, av) ≡ lim
a j→ai

∆Ē(ai, a j, av) ,

=
3
4

a2
i av

(ai − av)2

[
a2

i ln ai

(ai − 1)3 −
a2

v ln av

(av − 1)3

]

+
a2

i

ai − av

[
ai ln ai

(ai − 1)3 −
av ln av

(av − 1)3

]
+

a3
i

ai − av

[
ln ai

(ai − 1)3 −
ln av

(av − 1)3

]

+
9
4

a5
i ln ai

(ai − av)(ai − 1)4 −
3
4

a4
i

(ai − av)(ai − 1)3

−
a2

i

(ai − 1)2(av − 1)
·

[
1 −

7
4

a2
i

] [ 2
ai − 1

+
1

av − 1

]
−

a2
i

(ai − 1)2(av − 1)

[3
2

+
1
8

a2
i

]
, (A14)

Some of the formulae simplify considerably in the limit

av � ac, at , (A15)

yielding:

∆Ē(ac, at, av) ' −
ac

av
×

{
a2

c ln ac

(1 − ac)3 −
1

1 − ac

[ 1
at − 1

−
1

1 − ac
+

3
2

]}
, (A16)

∆Ē(ai, av) ' −
a2

i

av
×

 3
2a3

i + 11
4 a2

i − 2ai

(ai − 1)4 ln ai +
1
2 + 3

2ai −
35
8 a2

i + 1
8a3

i

(ai − 1)2

 . (A17)

APPENDIX B: WOLFENSTEIN’S PARAMETRIZATION OF THE CKM MATRIX

The Wolfenstein parameterization [67] of the CKM matrix is:

V =



1 −
1
2
λ2
−

1
8
λ4 λ Aλ3(ρ − iη)

−λ +
1
2

A2λ5[1 − 2(ρ + iη)] 1 −
1
2
λ2
−

1
8
λ4(1 + 4A2) Aλ2

Aλ3(1 − ρ̄ − iη̄) −Aλ2 +
1
2

Aλ4[1 − 2(ρ + iη)] 1 −
1
2

A2λ2


+ O(λ6) , (B1)

where λ,A, ρ̄ = ρ(1 − λ2/2), η̄ = η(1 − λ2/2) are [66]

λ = 0.2257+0.009
−0.001 , A = 0.814+0.021

−0.022 , ρ̄ = 0.135+0.031
−0.016 , η̄ = 0.349+0.015

−0.017 , (B2)
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APPENDIX C: CORRELATION BETWEEN |εK|SM AND (ρ̄, η̄)

In our analysis, we have used the values of ρ̄, η̄ in [66]. It is instructive, however, to

show how |εK|SM modifies when the values (ρ̄, η̄) change by a small amount. We indicate

with [|εK|SM]new the modified expression and with [|εK|SM]old the initial value. We have

then:

[|εK|SM]new = [|εK|SM]old ×

(
1 +

∆η̄

η̄old

)
− CE ×

(
A4λ10η̄

)
old
× ∆ρ̄ , (C1)

where ∆ρ̄(η̄) ≡ ρ̄(η̄)new − ρ̄(η̄)old and

CE ≡
G2

FM2
W

12
√

2π2
×

[ MK

∆MK

]
exp.
× BK f 2

K × 2Ē0(at) = 5.93 × 104 . (C2)

For example if we assume for (ρ̄, η̄)new the values (0.136± 0.032, 0.340± 0.016) [85] one has

[|εK|SM]new =
(
2.03+0.14

−0.12

)
× 10−3. This leads to δε is δε = 0.100+0.076

−0.077 (68% C.L.). This shows

that at the 68% C.L.we have always δε > 0. However in models of dynamical electroweak

symmetry breaking we analyzed here δ(iVL)
ε is always negative since W is always positive.

Hence these value strongly reduce the allowed space of parameters (MA, g̃). We need to

go to two sigmas to allow for the introduction of vector states.
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