41 research outputs found

    Enhancement of photoacoustic spectroscopy with sorption enrichment for ppt-level benzene detection

    Get PDF
    A real-time trace gas detector for benzene is demonstrated. The measurement system takes advantage of modest enrichment through short adsorption periods to reach a ppt-level detection limit with a sampling cycle of 90 s, which includes sample adsorption, desorption, and a spectroscopic measurement. Benzene is collected on Tenax TA sorbent for 30 s and then detected from the enriched samples with photoacoustic spectroscopy. High sensitivity is achieved using cantilever-enhanced photoacoustic spectroscopy and a continuous-wave quantum cascade laser emitting at 14.8 mu m wavelength, which corresponds to the absorption wavelength of the strongest benzene infrared band. We reach a detection limit of 150 ppt of benzene, over one sampling cycle. Interference from humidity and other common petrochemicals is evaluated. (C) 2022 Optica Publishing GroupPeer reviewe

    Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy

    Get PDF
    An exceptional property of photo-acoustic spectroscopy is the zero-background in wavelength modulation configuration while the signal varies linearly as a function of absorbed laser power. Here, we make use of this property by combining a highly sensitive cantilever-enhanced photo-acoustic detector, a particularly stable high-power narrow-linewidth mid-infrared continuous-wave optical parametric oscillator, and a strong absorption cross-section of hydrogen fluoride to demonstrate the ability of cantilever-enhanced photo-acoustic spectroscopy to reach sub-parts-per-trillion level sensitivity in trace gas detection. The high stability of the experimental setup allows long averaging times. A noise equivalent concentration of 650 parts-per-quadrillion is reached in 32 minutes.Peer reviewe

    Cantilever-enhanced photoacoustic measurement of HTO in water vapor

    Get PDF
    A photoacoustic detection of tritiated water (HTO) is presented. The method uses cantilever-enhanced photoacoustic spectroscopy (CEPAS) to reach sub-ppb sensitivity for HTO in the gas phase. A noise equivalent concentration of 0.88 ppb is reached with a sampling time of 1 min. The high performance and small sample volume of CEPAS allows sensitive detection of HTO from a sample with low total activity.Peer reviewe

    High-precision diode-laser-based temperature measurement for air refractive index compensation

    Get PDF
    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilises direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially non-homogenous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.Peer reviewe

    Cavity-enhanced cantilever-enhanced photo-acoustic spectroscopy

    Get PDF
    We have improved the sensitivity of a state-of-the-art cantilever-enhanced photo-acoustic trace gas sensor by combining it with an optical power build-up cavity. The build-up cavity enhances the photo-acoustic signal by a factor of approximate to 100, resulting in an exceptionally good normalised noise equivalent absorption (NNEA) value of 1.75 x 10(-12) W cm(-1) Hz(-1/2). We demonstrate the sensor platform in the 1530 nm wavelength range with a simple distributed feedback diode laser, achieving 75 ppt sensitivity for C2H2 with a 10 s integration time.Peer reviewe

    Cantilever-enhanced photoacoustic measurement of light-absorbing aerosols

    Get PDF
    Photoacoustic detection is a sensitive method for measurement of light-absorbing particles directly in the aerosol phase. In this article, we demonstrate a new sensitive technique for photoacoustic aerosol absorption measurements using a cantilever microphone for the detection of the photoacoustic signal. Compared to conventional diaphragm microphones, a cantilever offers increased sensitivity by up to two orders of magnitude. The measurement setup uses a photoacoustic cell from Gasera PA201 gas measurement system, which we have adapted for aerosol measurements. Here we reached a noise level of 0.013 Mm(-1) (one standard deviation) with a sampling time of 20 s, using a simple single-pass design without a need for a resonant acoustic cell. The sampling time includes 10 s signal averaging time and 10 s sample exchange, since the photoacoustic cell is designed for closed cell operation. We demonstrate the method in measurements of size-selected nigrosin particles and ambient black carbon. Due to the exceptional sensitivity, the technique shows great potential for applications where low detection limits are required, for example size-selected absorption measurements and black carbon detection in ultra clean environments.Peer reviewe

    Radiocarbon dioxide detection using cantilever-enhanced photoacoustic spectroscopy

    Get PDF
    Publisher Copyright: © 2021 Optical Society of America.In this Letter, we report on the sub-parts-per-billion-level radiocarbon dioxide detection using cantilever-enhanced photoacoustic spectroscopy. The 14C/C ratio of samples is measured by targeting a 14CO2 absorption line with minimal interference from other CO2 isotopes. Using a quantum cascade laser as a light source allows for a compact experimental setup. In addition, measurements of sample gases with 14CO2 concentrations as low as 100 parts-per-trillion (ppt) are presented. The Allan deviation demonstrates a noise equivalent concentration of 30 ppt at an averaging time of 9 min. The achieved sensitivity validates this method as a suitable alternative to more complex optical detection methods for radiocarbon dioxide detection used so far, and it can be envisioned for future in situ radiocarbon detection.Peer reviewe

    Optical power detector with broad spectral coverage, high detectivity, and large dynamic range

    Get PDF
    Optical power measurements are needed in practically all technologies based on light. Here, we report a general-purpose optical power detector based on the photoacoustic effect. Optical power incident on the detector's black absorber produces an acoustic signal, which is further converted into an electrical signal using a silicon-cantilever pressure transducer. We demonstrate an exceptionally large spectral coverage from ultraviolet to far infrared, with the possibility for further extension to the terahertz region. The linear dynamic range of the detector reaches 80 dB, ranging from a noise-equivalent power of 6 nW/root Hz to 600mW (independent of signal averaging time). Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License.Peer reviewe

    Frequency-comb-referenced mid-infrared source for high-precision spectroscopy

    Get PDF
    We report on a tunable continuous-wave mid-infrared optical parametric oscillator (OPO), which is locked to a fully stabilized near-infrared optical frequency comb using a frequency doubling scheme. The OPO is used for 40 GHz mode-hop-free, frequency-comb-locked scans in the wavelength region between 2.7 and 3.4 x03BC;m. We demonstrate the applicability of the method to high-precision cavity-ring-down spectroscopy of nitrous oxide (N2O) and water (H2O) at 2.85 x00B5;m and of methane (CH4) at 3.2 x03BC;m.Peer reviewe
    corecore