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Abstract: We report on a tunable continuous-wave mid-infrared optical 
parametric oscillator (OPO), which is locked to a fully stabilized near-
infrared optical frequency comb using a frequency doubling scheme. The 
OPO is used for 40 GHz mode-hop-free, frequency-comb-locked scans in 
the wavelength region between 2.7 and 3.4 μm. We demonstrate the 
applicability of the method to high-precision cavity-ring-down spectroscopy 
of nitrous oxide (N2O) and water (H2O) at 2.85 µm and of methane (CH4) at 
3.2 μm. 
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1. Introduction 

Various methods of laser absorption spectroscopy have provided techniques for fundamental 
studies of molecules, as well as for fast and non-intrusive trace gas analysis. Detection and 
composition quantification of small trace of gases in various physical, chemical, biological 
and industrial processes can be done with extremely high sensitivity especially in the mid-
infrared (MIR) spectral region, which contains strong fundamental ro-vibrational transitions 
of many molecules. For example, the CH, NH, and OH stretching modes typically lead to 
strong absorption bands in the wavelength region between 3 and 4 µm, that is, between 2500 
and 3330 cm−1. The strong absorption, the large number of detectable molecules, and the 
relatively small absorption due to water vapor make this so-called molecular fingerprint 
region ideal for trace gas detection. 

One of the most important technological advances in the field of laser spectroscopy has 
been the invention of the optical frequency comb (OFC), which provides a tool to synthesize 
and measure optical frequencies with extremely high accuracy [1]. This has also led to 
remarkable improvements in high-precision laser spectroscopy. Direct OFC spectroscopy can 
be used to measure large spectral spans at once [2,3], and a tunable single-frequency laser 
referenced to an OFC can be used to measure gas absorption lines with high resolution and 
accuracy [4–6]. These OFC spectroscopy methods are well-established in the visible and near-
infrared (NIR) regions, the most common solutions being based on mode-locked Ti:sapphire 
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lasers (OFC from 0.5 to 1.1 µm) and mode-locked Er-fiber lasers (OFC from 1 to 2 µm). The 
extension of the mode-locked laser frequency combs to the MIR region has proven difficult 
[7]. 

Mid-infrared OFCs have been demonstrated, for example, based on difference frequency 
generation (DFG) [8] and synchronously pumped femtosecond optical parametric oscillators 
(OPOs) [9,10]. All these methods can be used to create an OFC in the molecular fingerprint 
region between 3 and 4 µm. An accurate single-frequency source can, in principle, be realized 
by referencing a narrow-linewidth mid-infrared laser to a fully stabilized MIR comb [9]. At 
the moment, however, the fully stabilized mid-infrared OFCs are rather complex and are not 
commercially available. A more common solution is to reference the MIR laser to an NIR 
OFC via nonlinear optical frequency conversion [11–19]. This is typically done by using 
continuous-wave (cw) DFG [12, 14] or a cw OPO [11, 15–17], following the scheme of Fig. 
1(a). In addition, referencing of a narrow-linewidth laser to an NIR OFC by sum frequency 
generation (SFG) has been used at wavelengths longer than 4 µm [13, 18, 19]. 

Here we focus on the 3 to 4 µm region, which contains the fundamental vibrational bands 
of many interesting trace gas species. Figure 1(a) shows the principle of a typical cw DFG or 
an OPO based solution for OFC-referenced spectroscopy in this region. A high-power 1064 
nm laser, such as an Nd:YAG laser or a Yb-fiber laser, is typically used as a pump source. 
Difference frequency generation between the 1064 nm pump laser and a tunable diode laser at 
~1.6 µm produces a tunable MIR beam at ~3 µm [14]. The optical frequencies of these three 
beams, which are referred to as pump (p), signal (s), and idler (i), respectively, are linked to 
each other by the law of energy conservation: 

 p s iv v v= +  (1) 

As Eq. (1) implies, the absolute frequency of the MIR idler beam (νi) can be determined by 
measuring the frequencies νp and νs with an NIR OFC based on a mode-locked Er-fiber laser. 
The same method also works for a cw OPO, which is pumped at νp, and produces an NIR 
signal beam at νs, as well as a tunable MIR idler beam at νi. 

An advantage of the conventional method (Fig. 1(a)) is that it cancels the carrier-envelope 
offset frequency (fceo) of the comb, such that only the repetition frequency frep of the comb 
needs to be known in order to measure the absolute frequencies νp and νs [14, 20]. However, 
the method is tedious to use in applications where the MIR frequency needs to be scanned, 
because scanning of fceo or frep of the OFC results in scanning of both νp and νs if they are 
locked to the OFC. This problem can be somewhat mitigated by using an electro-optic 
modulator for scanning only one of the offset-locked frequencies, but even then the 
continuous scanning range of the MIR frequency is small, typically a few tens of MHz [16]. 
This limited tuning range could possibly be increased by using one of the methods that have 
been developed for gapless [21] or nearly gapless [4, 22] scanning of offset-locked NIR lasers 
over more than one frep. Simple scanning of the MIR beam can also be implemented by 
measuring the pump and signal frequencies without locking to the comb, however at the 
expense of increased frequency jitter in νi [17]. 
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Fig. 1. (a) The absolute frequency of a mid-infrared beam produced by cw DFG or OPO can be 
determined by measuring the frequencies of the pump and signal beams with an NIR OFC. 
These frequencies are measured by counting the beat frequency with the nearest comb tooth. 
The optical frequency of the mth tooth of the comb is νm = fceo + mfrep, where fceo is the carrier-
envelope offset frequency and frep is the repetition rate of the comb laser, both referenced to an 
atomic clock. The mode number m can be determined, e.g., from a coarse measurement of the 
respective frequency with a wavelength meter [1]. (b) The new method reported here is based 
on frequency doubling (second harmonic generation, SHG) of the MIR beam. This 
significantly simplifies the scanning of the MIR frequency νi while it is locked to the OFC. 

Here, we report a new approach, which makes continuous scanning of the MIR frequency 
over a range of at least 40 GHz possible while maintaining locking to an Er-fiber laser based 
OFC. The principle of this approach is illustrated in Fig. 1(b). The basic idea is to frequency 
double the MIR beam used for spectroscopy in an MgO-doped periodically poled lithium 
niobate (MgO:PPLN) crystal, after which its frequency can be directly referenced to the NIR 
OFC. This method needs a fully stabilized OFC, i.e., also fceo needs to be known. After 
locking to the OFC, the frequency of the MIR beam can be tuned by scanning the repetition 
rate of the comb. Unlike the previous method shown in Fig. 1(a), our new method (Fig. 1(b)) 
does not necessarily require a parametric MIR source that fulfils Eq. (1). The frequency-
doubling scheme works for any single-frequency MIR source, such as a quantum cascade 
laser (QCL), as long as the frequency-doubled power is sufficient for beat-frequency 
measurements with the OFC, and as long as the MIR wavelength is between 2 and 4 µm, such 
that it can be referenced to an Er-fiber-laser based OFC at 1 to 2 µm. Moreover, in contrast to 
previous solutions based on sum-frequency generation [13, 18, 19], our approach does not 
require an auxiliary high-power laser. 

The details of our new method and its experimental realization are discussed in the 
following sections. We also demonstrate the application of the method to accurate cavity-ring-
down (CRD) spectroscopy of CH4 and N2O/H2O at 3.2 and 2.85 µm, respectively. 

2. Experimental setup 

The setup used to realize the method outlined in Fig. 1(b) is schematically shown in Fig. 2. 
The setup consists of three main blocks: (1) A singly-resonant cw MIR OPO, (2) a link 
between the MIR OPO and an NIR frequency comb, and (3) a CRD spectrometer. These 
blocks are discussed below in more detail. 

2.1 Singly-resonant continuous-wave mid-infrared OPO 

The design of the singly resonant continuous-wave OPO is similar to that reported in our 
previous publications [15, 23]. As a pump laser we use a narrow-linewidth Yb-fiber-laser 
system (IPG YAR-15K-1064-LP-SF), which produces up to 15 W of output power at 1064 
nm wavelength. The pump beam is focused into a 5 cm long MgO:PPLN crystal (HC 
Photonics), which is placed inside the OPO cavity (Fig. 2). The temperature of the crystal can 
be stabilized to any value between 20 and 200 °C with a precision of ± 0.01 °C. The crystal 
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has seven poling periods, ranging from 28.5 to 31.5 µm. Coarse tuning of the MIR idler 
wavelength between 2.7 and 3.4 µm is done by changing the poling period and temperature of 
the crystal. Fine tuning and scanning of the idler frequency are done by the pump laser, which 
has a fast mode-hop-free tuning range of ~100 GHz. 

The bow-tie ring cavity of the OPO is formed by four mirrors, which are highly reflective 
(> 99.9%) at the signal wavelength (1500-1750 nm) and transmit the pump and idler 
wavelengths. The rear surfaces of the mirrors are antireflection coated for all three 
wavelengths. The free spectral range of the cavity is ~680 MHz. To reduce the probability of 
mode-hops, a 0.4 mm thick solid YAG etalon is placed in the secondary focus of the OPO 
cavity [24]. The idler beam exiting the cavity is collimated and separated from the residual 
pump and signal beams using a dichroic mirror. The single-mode output power of the MIR 
idler beam is over 0.5 W, and the 1-second linewidth is of the order of 1 MHz. 

 

Fig. 2. A schematic picture of the experimental setup. The pump laser beam (λp) is coupled into 
a four mirror bow-tie OPO cavity. The mirrors are highly reflective for the signal beam (λs). A 
fraction of the MIR output beam (λi ~3 µm) is directed to a cavity-ring-down setup for 
sensitive molecular spectroscopy. The absolute frequency of the beam is measured with an 
NIR frequency comb after frequency doubling in a nonlinear crystal. The same setup can also 
be used to lock the MIR frequency to the OFC, after which it can be scanned by scanning the 
OFC. The symbol AOM denotes an acousto-optic modulator used to initiate ring-down events. 
MgO:PPLN is a nonlinear optical crystal. The symbol PZT denotes a piezoelectric actuator. 

2.2 Link between the MIR OPO and an NIR frequency comb 

The MIR output beam of the OPO is frequency doubled in order to link it to an NIR 
frequency comb according to the scheme outlined in Fig. 1(b). To do this, the MIR beam is 
focused into a 20 mm long frequency-doubling crystal (MgO:PPLN). The calculated 1/e2 
waist size of the focused MIR beam in the middle of the crystal is 60 µm. The crystal has 6 
poling periods with a 0.4 µm step increment between 33.3 and 35.3 µm, and antireflection 
coated end facets. The crystal is placed in an oven, whose temperature can be set between 20 
and 200 °C. The available poling periods and temperature tuning range allow frequency 
doubling of any MIR wavelength between 2.7 and 3.4 µm. 

The frequency-doubled idler beam is guided through an optical fiber link to a beat-
frequency measurement with a commercially available, fully stabilized OFC (Menlo Systems 
FC1500-100). The OFC covers wavelengths between 1 and 2 µm directly, and has a repetition 
rate of 100 MHz. The repetition rate and the offset frequency of the OFC are referenced to an 
active hydrogen maser, which is traceable to the SI-second. The OFC output is filtered twice 
with a diffraction grating (Thorlabs GR25-0613), and subsequently combined with the 
frequency-doubled idler beam of the OPO using a single mode fiber combiner with a 50/50 
split ratio. The beat signal between the combined beams is detected using a fast fiber-coupled 
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InGaAs detector. The beat frequency is counted with a frequency counter (Menlo Systems 
FXM50). 

The OPO MIR frequency is locked to the OFC using a simple method: the beat note 
between the frequency-doubled idler beam and the OFC is read with the frequency counter, 
and this beat frequency is stabilized to a pre-set value by applying a correction to the OPO 
pump laser frequency (which, according to Eq. (1), leads to an equally large correction in the 
idler frequency). We typically lock the beat frequency to 20 MHz, and filter the beat signal 
with a 48 MHz low-pass filter before the counter. The correction signal is obtained from a 
proportional-integral (PI) controller implemented with LabVIEW (National Instruments). The 
bandwidth of the PI control is a few tens of hertz, which is limited by the shortest available 
gate time (4 ms) of the frequency counter. The effect of this stabilization method on the MIR 
idler frequency is demonstrated in Fig. 3. It is worth noting that true phase locking and faster 
feedback are also possible, which would reduce the linewidth of the OFC-locked OPO. 
However, in this work, we deliberately used the counter-based frequency-locking method, 
because it is simple to implement and use, and provides sufficient frequency stability for sub-
Doppler spectroscopy, as is discussed in Section 3. 

With the frequency locking applied, the scanning of the MIR frequency of the OPO is 
done by adjusting the repetition rate of the OFC. The repetition rate can be changed in total by 
430 kHz using a stepper motor and a piezoelectric actuator. At the center wavelength 1560 
nm of the comb, the mode number m is ~1 900 000. Therefore, the full range of repetition rate 
tuning corresponds to an (optical) frequency tuning of m × 430 kHz = ~820 GHz, which 
corresponds to a maximum continuous tuning of 820 GHz/2 = 410 GHz in the MIR region. In 
our case, the mode-hop-free scanning range of the MIR frequency of the OFC-locked OPO is 
in practice limited to 100 GHz, which is the tuning range of the OPO pump laser. Any 
frequency scan larger than this requires a change in the temperature and/or poling period of 
the OPO crystal, and subsequent relocking to the OFC. 
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Fig. 3. a) OPO idler frequency jitter as derived from an SHG beat frequency measurement. The 
OPO is free-running before 0 s and locked to the OFC after 0 s. b) Allan deviation of the OFC-
locked OPO frequency calculated from Fig. 3(a). 

A beat signal signal-to-noise ratio (SNR) of approximately 25 dB (with 300 kHz 
resolution bandwidth, RBW) is needed for reliable frequency counting and locking. Owing to 
the irregular envelope spectrum of the OFC, the required frequency-doubled power depends 
on the wavelength, but in general the 25 dB SNR can be obtained with our experimental setup 
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if the frequency-doubled power exceeds 10 µW at the photodetector which is used for beat 
frequency counting. Figure 4 shows the theoretical and measured frequency-doubled power as 
a function of the MIR power entering the 20 mm long MgO:PPLN crystal. With an optimized 
frequency doubler, the required beat-note SNR can be obtained with an MIR power of as low 
as 100 mW. This suggests that the same method could also be applied with other MIR laser 
sources, such as quantum cascade and interband cascade lasers, which are also rapidly 
developing in the 3 to 4 µm region with a promise of high cw output power and broad tuning 
range [25]. It is worth noting that the frequency-doubling efficiency can be further improved 
by, e.g., using a longer MgO:PPLN crystal, an MgO:PPLN waveguide, or by placing the 
crystal in a power build-up cavity. 

In practice, we observe a frequency-doubling efficiency which is 40-50% of the 
theoretical maximum (Fig. 4(a)). This is attributed to mainly optical losses due to imperfect 
coatings of the crystal ends and the dichroic mirrors that are used to separate the frequency-
doubled beam from the MIR beam. With 0.5 W of MIR power, we typically measure 80-90 
µW of frequency-doubled power. After losses due to the fiber combiner and a 50 m optical 
fiber link that connects the OPO laboratory and the OFC laboratory, we obtain, depending on 
the wavelength, a 25 to 40 dB SNR in the beat frequency measurement with the comb (300 
kHz RBW). The phase-matching curve of the doubling crystal is more than 200 GHz wide 
even for the long-wavelength end of the MIR tuning range (Fig. 4(b)), which means that the 
continuous OFC-locked scans extending over 100 GHz can easily be done without changing 
the temperature or poling period of the crystal. 
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Fig. 4. (a) Frequency-doubling efficiency using a 20 mm long MgO:PPLN crystal with optimal 
focusing of the MIR beam. The curves show the calculated frequency-doubled power as a 
function of the MIR power, and the dot indicates a measured power. (b) Phase-matching curves 
at two different MIR wavelengths, 2850 and 3255 nm. 

2.3 Cavity-ring-down spectrometer 

The OFC-locked MIR OPO presented above can be combined with any standard absorption 
spectroscopy method, such as direct absorption spectroscopy, wavelength modulation 
absorption spectroscopy, and cavity-enhanced spectroscopy. In addition, the high MIR output 
power of the OPO makes the setup suitable for saturated-absorption spectroscopy and photo-
acoustic spectroscopy. In this work, we demonstrate the applicability of the instrument in 
CRD spectroscopy. The CRD spectrometer is briefly described below. 

As is schematically shown in Fig. 2, a small fraction of the MIR output power of the OPO 
is directed to a ring-down cavity in on-axis configuration. If high MIR power is needed for 
spectroscopy, one can also use the 0.5 W MIR beam passing through the frequency-doubling 
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crystal, since the depletion of this beam due to the doubling process is negligible. The ring-
down cavity is formed by two highly reflecting concave mirrors, which each has a radius of 
curvature of 1 m. The mirrors are placed on commercial mirror holders (Los Gatos) and 
connected with each other by a 0.5 m long stainless-steel tube. In our experiments, we have 
used two mirror sets: The first set has a reflectivity of about 0.9994 at 3.2 µm, which 
corresponds to a ring-down time of ~3 µs [26]. The second set of mirrors has a reflectivity 
and ring-down time of 0.9997 and ~8 µs, respectively, at 2.85 µm. The MIR beam leaking out 
of the cavity is focused by a 10 cm lens on a fast photodetector (Vigo system, PVI-2TE-
5/VPDC-20I). The ring-down signal from the detector is processed and digitized by a fast 14 
bit data acquisition card (Gage, Compuscope 14100), and subsequently fitted by the least-
squares method to a single exponential function using the Levenberg–Marquadt algorithm in a 
LabVIEW program. 

The ring-down events are initiated by switching off the MIR beam incident on the ring-
down cavity using an acousto-optic modulator (AOM) after the optical power inside the 
cavity reaches a certain trigger level. At every measured frequency point, the ring-down 
cavity frequency is matched to the OFC locked frequency by modulating the length of the 
cavity using piezoelectric actuators. The modulation frequency is typically 10 to 30 Hz. The 
measurements of the ring-downs are synchronized with the OFC-measurement of the MIR 
frequency. In addition, the 50 MHz signal driving the AOM can be referenced to the same 
time base (hydrogen maser) as the OFC, in order to accurately account for the nominal 50 
MHz frequency shift that the AOM causes to the MIR beam, which is directed to the CRD-
measurement. Even when the AOM is not referenced to the maser, the observed frequency 
jitter/drift of the AOM frequency is negligibly small, of the order of 1 Hz/h. 

3. Application to high-precision absorption spectroscopy 

We have used the frequency-comb referenced MIR spectrometer of Fig. 2 for high-precision 
spectroscopy of N2O, H2O, and CH4. As an example, Fig. 5(a) shows a continuously scanned 
spectrum of an N2O sample at 2.85 µm in the presence of water, demonstrating a large (40 
GHz) mode-hop-free scan of the spectrometer while maintaining locking to the OFC. The 40 
GHz mode-hop-free tuning range makes the setup useful for the measurements of several 
transitions in a single scan in the wavelength region below 4.0 µm. The measurement 
presented in Fig. 5(a) took approximately one hour, but much faster scanning speed can be 
obtained without locking the OPO to the comb, as has been demonstrated by Knabe et al. 
using a comb referenced external-cavity QCL at 4.5 µm [19]. Meanwhile the locking to the 
OFC ensures accurate calibration of the frequency axis, the vertical axis (absorbance or 
absorption coefficient) is also accurately calibrated thanks to the CRD-technique used in the 
measurement [27]. This combination of accurate measurement of both absorbance and 
frequency axis is useful, e.g., for measurements of molecular absorption line parameters in 
attempt to improve the accuracy of spectroscopic databases, such as HITRAN [28]. 

Measurement of absorption line intensities is an example of an application that requires 
high accuracy of both frequency and absorbance. The line intensity ST can be calculated from 
the integrated absorption coefficient [29]. Figure 5(b) shows, as an example, a measurement 
of the line intensity of the R44e transition of the ν1 + ν3 band of N2O. Each frequency point 
(black marker) in the spectrum is an average of 50 ring-down events recorded during 5 s. The 
line intensity deduced from the measurement is S0 = 2.7472 × 10−21 cm−1/(molecule/cm−2), 
which is close to the value listed in the HITRAN database (S0 = 2.7540 × 10−21 
cm−1/(molecule/cm−2), with a stated uncertainty of 2 to 5%) [28]. The noise-equivalent 
absorption sensitivity calculated from the residual of the line intensity measurement is 9.8 × 
10−8 cm−1 Hz-1/2. The estimated total uncertainty of our line intensity is 3.4%, mainly limited 
by the fitting procedure (3.0%). The line-intensity data were fitted using both Voigt and 
Galatry profiles with no significant difference in the residuals, see Fig. 5(b). This might 
indicate that there are other disturbing mechanisms than Dicke narrowing, such as speed-
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dependent effects. Alternatively, the SNR of the measurement (~100) is not high enough to 
reliably fit a Galatry profile. The statistical uncertainty of the ring-down fitting is 0.3%. The 
uncertainties due to the mole fraction, temperature, and pressure gauge are 1.5, 0.3, and 0.2%, 
respectively. 

In general, with our new method, we can precisely measure the line center frequencies, 
line shapes, broadening, as well as the line intensities. As the OPO is locked to the OFC, the 
scans can be performed slowly to take advantage of averaging, without the fear of 
compromising the frequency accuracy due to drifting of the OPO frequency. 
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Fig. 5. (a) A continuous scan of 40 GHz measured with a frequency comb locked OPO. Red 
line is the least-square Voigt fit to the measured data points (black markers). Below the spectra 
is the residual of the fitted model. Pressure was 100 mbar. (b) The R44e transition of the ν1 + ν3 
band of N2O at the pressure of 100 mbar. Black markers in the spectra present measured data 
points and the red line presents the least-square Voigt and Galatry fits to them. Below the 
spectra are the residuals of the fitted models. The nitrous oxide mixing ratio was 5 ppmv ± 
1.5%. 

The high finesse of the ring-down cavity leads to high intracavity power even at modest 
input powers. In our experiments, we send 10 to 100 mW of MIR power into the ring-down 
cavity and typically couple it with ≥10% efficiency. This means that even at 3.2 µm, where 
the empty-cavity finesse is approximately 5200, we can easily reach watt-level cw power 
circulating in the cavity. This power is sufficient to saturate the strong fundamental ro-
vibrational transitions of many molecules within the tuning range of the spectrometer. Here, 
we demonstrate saturated CRD spectroscopy by measuring R8 transition of the ν3 band of 
methane at 3.2 µm. As is shown in Fig. 6(a), many of the tetrahedral components of this 
transition are overlapping even at low pressures where pressure broadening is small and the 
lines are only about 150 MHz wide owing to Doppler broadening. The saturation of the 
absorption allows us to carry out measurements with sub-Doppler resolution, which 
significantly improves the precision in determining the absorption line centers, especially in 
the case of overlapping lines. Figure 6(b) shows an example of a Lamb dip (saturated 
absorption feature) of one of the tetrahedral components. The high spectral resolution at the 
center of the transition is achieved by scanning the repetition rate of the OFC in steps of ~0.5–
1.0 Hz (~0.5-1.0 MHz in the mid-IR). In the wings of the transition, the frequency step is 
larger. 
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Fig. 6. (a) A part of the spectrum of the R8 transition of the ν3 band of CH4 at the pressure of 
50 mbar. (b) A spectrum of a Doppler broadened F1

(2) R8 component of CH4 with a Lamb dip 
at the center of the transition at the pressure of 1 mbar. Red lines are least-square Voigt fits to 
the measured spectra. Below the spectra are the residuals of the fitted model. The methane 
mixing ratio was approximately 5 ppmv. 

4. Conclusion 

In this article, we have reported a new method that can be used for high-resolution OFC-
referenced spectroscopy in the mid-infrared region. The method is based on frequency 
doubling of the MIR beam used for spectroscopy, after which it can be referenced to a 
commercially available, fully stabilized Er-fiber-laser OFC in the NIR region, thus 
circumventing the problem of lacking MIR frequency combs. Here, we have demonstrated 
implementation of the method using a singly-resonant cw OPO as the coherent MIR light 
source, which is referenced to an Er-fiber-laser OFC. In the future, the method can also be 
used with other cw lasers that are tunable in the MIR region, between 2 and 4 µm, which is 
the region for which the doubled frequency overlaps with the span of the Er-fiber-laser OFC. 
Approximately 100 mW of MIR laser power is needed when using a simple single-pass 
frequency doubling scheme. This power level will likely be within the capabilities of cw 
interband cascade lasers and quantum cascade lasers in the near future [25]. 

We have used the new method for high-precision, sub-Doppler spectroscopy of N2O/H2O 
and CH4 at 2.85 and 3.2 µm, respectively. We have experimentally demonstrated that the 
method can be used for large, 40 GHz mode-hop-free scans while maintaining locking of the 
MIR frequency to the OFC. The accuracy of the frequency axis calibration in these 
measurements was approximately 50 kHz (1 s averaging time), which was limited by the 
relatively small (a few tens of hertz) locking bandwidth used to stabilize the MIR OPO to the 
OFC. The locking bandwidth was limited by the frequency counter, which was used as a part 
of the locking circuitry to keep the experimental setup simple and versatile. For applications 
that require even better frequency accuracy, further improvements can be obtained by 
increasing the locking bandwidth and by using a phase-locked loop, which is a standard 
technique for laser stabilization to an OFC [1, 4]. The accuracy of cavity-ring-down-
spectroscopy can be improved by stabilizing the ring-down-cavity length by locking the laser 
to it [6, 30]. 
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