1,981 research outputs found
Keck Observations of the Hidden Quasar IRAS P09104+4109
We present imaging and spectro- polarimetric observations of the
ultraluminous infrared galaxy IRAS P09104+4109 using the Keck 10-m Telescope.
We detect the clear presence of broad Hb, Hg, and MgII 2800 emission lines in
the polarized flux spectra of the nucleus and of an extranuclear emission
region ~ 4" away, confirming the presence of a hidden central quasar. The
polarization of the broad Mg II emission line is high (~ 29%), consistent with
the remarkably high polarization (~ 30%-40%) observed in the extended continuum
emission. The narrow emission lines are polarized in a stratified fashion, with
the high ionization lines being polarized 0.7%-1.7% and [O II] essentially
unpolarized. The line polarizations are positively correlated with critical
density, ionization potential, and velocity width of the emission lines. This
indicates that the NLR may be partially shadowed by the putative torus, with
the higher ionization lines originating closer to the nucleus. One notable
characteristic of the extranuclear knot is that all species of Fe are markedly
absent in its spectrum, while they appear prominently in the nucleus. Our
favored interpretation is that there is a large amount of dust in the
extranuclear regions, allowing gaseous refractory metals to deposit. The
extended emission regions are most likely material shredded from nearby cluster
members and not gas condensed from the cooling flow or expelled from the
obscured quasar. Our data provide strong evidence for matter-bounded clouds in
addition to ionization-bounded clouds in the NLR. Ionization by pure velocity
shocks can be ruled out. Shocks with photoionizing precursors may be present,
but are probably not a dominant contributor to the energy input.Comment: 32 pages, including 9 figs and 2 tables, to be published in the
Astronomical Journa
Periods for flat algebraic connections
In previous work, we established a duality between the algebraic de Rham
cohomology of a flat algebraic connection on a smooth quasi-projective surface
over the complex numbers and the rapid decay homology of the dual connection
relying on a conjecture by C. Sabbah, which has been proved recently by T.
Mochizuki for algebraic connections in any dimension. In the present article,
we verify that Mochizuki's results allow to generalize these duality results to
arbitrary dimensions also
Policy Uncertainty and Firm Cash Holdings
This research examines the relation between government economic policy uncertainty and firm cash holdings. We find evidence that policy uncertainty is positively related to firm cash holdings due to firms’ precautionary motives and, to a lesser extent, investment delays. The relation between policy uncertainty and cash holdings is more pronounced for firms dependent on government spending and extends beyond business cyclicality. Further analysis indicates that the effects of policy uncertainty on corporate cash holdings are distinct from those of political, market, or other macroeconomic uncertainty
n-Gram-based text compression
We propose an efficient method for compressing Vietnamese text using n-gram dictionaries. It has a significant compression ratio in comparison with those of state-of-the-art methods on the same dataset. Given a text, first, the proposed method splits it into n-grams and then encodes them based on n-gram dictionaries. In the encoding phase, we use a sliding window with a size that ranges from bigram to five grams to obtain the best encoding stream. Each n-gram is encoded by two to four bytes accordingly based on its corresponding n-gram dictionary. We collected 2.5 GB text corpus from some Vietnamese news agencies to build n-gram dictionaries from unigram to five grams and achieve dictionaries with a size of 12 GB in total. In order to evaluate our method, we collected a testing set of 10 different text files with different sizes. The experimental results indicate that our method achieves compression ratio around 90% and outperforms state-of-the-art methods.Web of Scienceart. no. 948364
The Comparison of Characteristics in Tin Doped Indium Oxide (ITO) Synthesized via Nonaqueous Sol-Gel and Solvothermal Process
Tin doped indium oxide nanoparticles were synthesized by nonaqueous sol-gel method and solvothermal process from indium acetylacetonate (In(acac)3) and tin bis(acetylacetonate)dichloride (Sn(acac)2Cl2) in oleyamine as the starting materials. The structure and morphology of ITO samples were analyzed by XRD and TEM. The electrical conductivy and specific surface area of both ITO samples were also determined and compared to each other. The ITO prepared via solvothermal method showed better results that prepared by nonaqueous sol-gel method
Regional and local emissions in red river delta, Northern Vietnam
Fine (PM2.2) and coarse (PM2.2–10) particles concurrently collected in urban (Hanoi) and rural (Lucnam) areas were analyzed for ionic and elemental compositions to provide input for PMF receptor modeling of emission sources in the Red River Delta (RRD), a key economic development region in Vietnam. Long-range transport (LRT) aerosol, coal fly ash from major coal-fired plants in RRD, and marine aerosols are regional sources, which explain the minor variability of the mass concentrations of fine particles across the region. Local sources include soil/resuspended road dust, local coal fly ash, and biomass burning. Soil/resuspended road dust is the largest source component of coarse particles at the two sites. It is more abundant in Hanoi than in Lucnam reflecting the urban–rural contrast in traffic and construction works. Receptor models reveal the incorporation of secondary sulfate, nitrate, and ammonium into the various primary particles, i.e., soot, minerals, soil organic matter, and sea salt. Soot particles from LRT carry the largest amounts of sulfate and ammonium mass concentrations measured at the two sites. Based on receptor models, the yields and possible chemical forms of secondary sulfate, nitrate, and ammonium in different types of primary particles can be inferred
Complete Embedded Self-Translating Surfaces under Mean Curvature Flow
We describe a construction of complete embedded self-translating surfaces
under mean curvature flow by desingularizing the intersection of a finite
family of grim reapers in general position.Comment: 42 pages, 8 figures. v2: typos correcte
User Selection Approaches to Mitigate the Straggler Effect for Federated Learning on Cell-Free Massive MIMO Networks
This work proposes UE selection approaches to mitigate the straggler effect
for federated learning (FL) on cell-free massive multiple-input multiple-output
networks. To show how these approaches work, we consider a general FL framework
with UE sampling, and aim to minimize the FL training time in this framework.
Here, training updates are (S1) broadcast to all the selected UEs from a
central server, (S2) computed at the UEs sampled from the selected UE set, and
(S3) sent back to the central server. The first approach mitigates the
straggler effect in both Steps (S1) and (S3), while the second approach only
Step (S3). Two optimization problems are then formulated to jointly optimize UE
selection, transmit power and data rate. These mixed-integer mixed-timescale
stochastic nonconvex problems capture the complex interactions among the
training time, the straggler effect, and UE selection. By employing the online
successive convex approximation approach, we develop a novel algorithm to solve
the formulated problems with proven convergence to the neighbourhood of their
stationary points. Numerical results confirm that our UE selection designs
significantly reduce the training time over baseline approaches, especially in
the networks that experience serious straggler effects due to the moderately
low density of access points.Comment: submitted for peer review
Salinity dynamics under different water management plans coupled with sea level rise scenarios in the Red River Delta, Vietnam
In recent years, saltwater intrusion in river estuaries has become more severe and frequent worldwide. The common reasons lie in increasing freshwater withdrawal, river flow regulation and sea level rise due to global warming. In particular, the Red River Delta in northern Vietnam is facing a strong population growth worsening the pressure on freshwater resources for drinking water and irrigation needs. During the dry season, increasing conflicts and constraints in freshwater availability have already been experienced. Adverse combinations of river flow regulations and high sea levels lead to severe upstream propagations of salinity. This study takes advantage of a statistical characterization of discharges released from Hoa Binh reservoir and observed at Son Tay station, the main river flow control upstream of the river delta, along with downscaled and updated sea level rise sce- narios to estimate the future extents of saltwater intrusion under different options of water release from reser- voirs in the dry season. To do so, a 1D hydraulic model of the river delta network was implemented using MIKE11 software. The hydraulic and the quality modules were calibrated and validated with respect to the present scenario by using water stages and salinity concentrations observed in estuary branches. Sea level rise projections for 2050 and 2100 referred to RCP4.5 and RCP8.5 AR5 emission scenarios were then considered. Results show that river flow regulation can provide an effective mitigation measure. A 20–30% increase in the discharge released from the Son Tay station would be beneficial to push downstream the saltwater intrusion in the main Red River branch during the dry season. For instance, in 2050 the 1‰ salt concentration front is ex- pected to be pushed back at least 6 km when the exceeding probability of the discharge released by Son Tay station decreases from 95% to 25%
- …