526 research outputs found

    Wheat classification exercise, using 11 June 1973, ERTS MSS data for Fayette County, Illinois (for CITARS task)

    Get PDF
    The prime emphasis was on classification of pixels in field centers, away from boundary effects. Results were encouraging in both training and test field centers for wheat and other major types of vegetation present. However, the location of fields was found to be a serious problem and it was even more difficult to select field-center pixels for fields of sizes less than 20 acres (or even larger, depending upon field shape) for use in the field-center analysis. The majority of fields in the segment are less than 20 acres in size. ERTS-1 data were received on 12 September 1973. Ground truth information and aerial photography were received on 9 and 15 September. The data were analyzed and processed digitally using the ERIM multispectral software system

    A SiGe HEMT Mixer IC with Low Conversion Loss

    Get PDF
    The authors present the first SiGe HEMT mixer integrated circuit. The active mixer stage, operating up to 10GHz RF, has been designed and realized using a 0.1µ µµ µm gate length transistor technology. The design is based on a new large-signal simulation model developed for the SiGe HEMT. Good agreement between simulation and measurement is reached. The mixer exhibits 4.0dB and 4.7dB conversion loss when down-converting 3.0GHz and 6.0GHz signals, respectively, to an intermediate frequency of 500MHz using high-side injection of 5dBm local oscillator power. Conversion loss is less than 8dB for RF frequencies up to 10GHz with a mixer linearity of –8.8dBm input related 1dB compression point

    Radiation-induced cell transformation: transformation efficiencies of different types of ionizing radiation and molecular changes in radiation transformants and tumor cell lines

    Get PDF
    This study aims to compare the efficiencies of 5.4 keV soft X-rays, alpha-particles, and gamma-rays in transforming C3H 10T1/2 cells and to assess the sequence of cellular and molecular changes during the process of radiation-induced transformation of Syrian hamster embryo (SHE) cells. The somewhat more densely ionizing soft X-rays are more effective than gamma-rays both for cell inactivation and cell transformation. The relative biological effectiveness (RBE) appears to be independent of dose; it is approximately 1.3 for either end point. The RBE of alpha-particles versus gamma-rays, on the other hand, increases with decreasing dose; the dose dependence is somewhat more apparent for cell transformation than for cell inactivation. SHE cells transformed by different types of ionizing radiation and related tumor cell lines isolated from nude mice tumors were found to have a distinct growth advantage compared to primary SHE cells, documented by higher plating efficiencies, shorter doubling times, and higher cloning efficiencies in semisolid medium. Most transformed and tumor cell lines that were investigated have elevated mRNA levels for the H-ras gene, some of them show restriction fragment length polymorphisms of the H-ras gene, and some exhibit a substantially amplified c-myc gene. In a sequence analysis of the Syrian hamster H-ras gene of eight tumor cell lines from radiation transformants, we have not found any mutation in codons 12, 13, 59, 61, nor in the flanking regions of these codons. The transformed and tumor cell lines tend to have lower chromosome numbers than primary SHE cells

    LIRA: Lifelong Image Restoration from Unknown Blended Distortions

    Full text link
    Most existing image restoration networks are designed in a disposable way and catastrophically forget previously learned distortions when trained on a new distortion removal task. To alleviate this problem, we raise the novel lifelong image restoration problem for blended distortions. We first design a base fork-join model in which multiple pre-trained expert models specializing in individual distortion removal task work cooperatively and adaptively to handle blended distortions. When the input is degraded by a new distortion, inspired by adult neurogenesis in human memory system, we develop a neural growing strategy where the previously trained model can incorporate a new expert branch and continually accumulate new knowledge without interfering with learned knowledge. Experimental results show that the proposed approach can not only achieve state-of-the-art performance on blended distortions removal tasks in both PSNR/SSIM metrics, but also maintain old expertise while learning new restoration tasks.Comment: ECCV2020 accepte

    Complete Issue 42(1)

    Get PDF
    Complete digitized issue (volume 42, issue 1, November 1959) of The Gavel of Delta Sigma Rho

    Recent Advances Concerning Certain Class of Geophysical Flows

    Full text link
    This paper is devoted to reviewing several recent developments concerning certain class of geophysical models, including the primitive equations (PEs) of atmospheric and oceanic dynamics and a tropical atmosphere model. The PEs for large-scale oceanic and atmospheric dynamics are derived from the Navier-Stokes equations coupled to the heat convection by adopting the Boussinesq and hydrostatic approximations, while the tropical atmosphere model considered here is a nonlinear interaction system between the barotropic mode and the first baroclinic mode of the tropical atmosphere with moisture. We are mainly concerned with the global well-posedness of strong solutions to these systems, with full or partial viscosity, as well as certain singular perturbation small parameter limits related to these systems, including the small aspect ratio limit from the Navier-Stokes equations to the PEs, and a small relaxation-parameter in the tropical atmosphere model. These limits provide a rigorous justification to the hydrostatic balance in the PEs, and to the relaxation limit of the tropical atmosphere model, respectively. Some conditional uniqueness of weak solutions, and the global well-posedness of weak solutions with certain class of discontinuous initial data, to the PEs are also presented.Comment: arXiv admin note: text overlap with arXiv:1507.0523

    Studies of the dose-effect relation

    Get PDF
    Dose-effect relations and, specifically, cell survival curves are surveyed with emphasis on the interplay of the random factors — biological variability, stochastic reaction of the cell, and the statistics of energy deposition —that co-determine their shape. The global parameters mean inactivation dose, , and coefficient of variance, V, represent this interplay better than conventional parameters. Mechanisms such as lesion interaction, misrepair, repair overload, or repair depletion have been invoked to explain sigmoid dose dependencies, but these notions are partly synonymous and are largely undistinguishable on the basis of observed dose dependencies. All dose dependencies reflect, to varying degree, the microdosimetric fluctuations of energy deposition, and these have certain implications, e.g. the linearity of the dose dependence at small doses, that apply regardless of unresolved molecular mechanisms of cellular radiation action

    A regularity class for the roots of nonnegative functions

    Get PDF
    We investigate the regularity of the positive roots of a non-negative function of one-variable. A modified H\"older space Fβ\mathcal{F}^\beta is introduced such that if fFβf\in \mathcal{F}^\beta then fαCαβf^\alpha \in C^{\alpha \beta}. This provides sufficient conditions to overcome the usual limitation in the square root case (α=1/2\alpha = 1/2) for H\"older functions that f1/2f^{1/2} need be no more than C1C^1 in general. We also derive bounds on the wavelet coefficients of fαf^\alpha, which provide a finer understanding of its local regularity.Comment: 12 page

    Cave spiders choose optimal environmental factors with respect to the generated entropy when laying their cocoon

    Get PDF
    The choice of a suitable area to spiders where to lay eggs is promoted in terms of Darwinian fitness. Despite its importance, the underlying factors behind this key decision are generally poorly understood. Here, we designed a multidisciplinary study based both on in-field data and laboratory experiments focusing on the European cave spider Meta menardi (Araneae, Tetragnathidae) and aiming at understanding the selective forces driving the female in the choice of the depositional area. Our in-field data analysis demonstrated a major role of air velocity and distance from the cave entrance within a particular cave in driving the female choice. This has been interpreted using a model based on the Entropy Generation Minimization - EGM - method, without invoking best fit parameters and thanks to independent lab experiments, thus demonstrating that the female chooses the depositional area according to minimal level of thermo-fluid-dynamic irreversibility. This methodology may pave the way to a novel approach in understanding evolutionary strategies for other living organisms
    corecore