23 research outputs found

    Establishment of a reborn MMV-microarray technology: realization of microbiome analysis and other hitherto inaccessible technologies

    Get PDF
    BACKGROUND: With the accelerating development of bioscience, the problem of research cost has become important. We previously devised and developed a novel concept microarray with manageable volumes (MMV) using a soft gel. It demonstrated the great potential of the MMV technology with the examples of 1024-parallel-cell culture and PCR experiments. However, its full potential failed to be expressed, owing to the nature of the material used for the MMV chip. RESULTS: In the present study, by developing plastic-based MMVs and associated technologies, we introduced novel technologies such as C2D2P (in which the cells in each well are converted from DNA to protein in 1024-parallel), NGS-non-dependent microbiome analysis, and other powerful applications. CONCLUSIONS: The reborn MMV-microarray technology has proven to be highly efficient and cost-effective (with approximately 100-fold cost reduction) and enables us to realize hitherto unattainable technologies

    Protein Misdirection Inside and Outside Motor Neurons in Amyotrophic Lateral Sclerosis (ALS): A Possible Clue for Therapeutic Strategies

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive muscle wasting and weakness with no effective cure. Emerging evidence supports the notion that the abnormal conformations of ALS-linked proteins play a central role in triggering the motor neuron degeneration. In particular, mutant types of superoxide dismutase 1 (SOD1) and TAR DNA binding protein 43kDa (TDP-43) are key molecules involved in the pathogenesis of familial and sporadic ALS, respectively. The commonalities of the two proteins include a propensity to aggregate and acquire detrimental conformations through oligomerization, fragmentation, or post-translational modification that may drive abnormal subcellular localizations. Although SOD1 is a major cytosolic protein, mutated SOD1 has been localized to mitochondria, endoplasmic reticulum, and even the extracellular space. The nuclear exclusion of TDP-43 is a pathological hallmark for ALS, although the pathogenic priority remains elusive. Nevertheless, these abnormal behaviors based on the protein misfolding are believed to induce diverse intracellular and extracellular events that may be tightly linked to non-cell-autonomous motor neuron death. The generation of mutant- or misfolded protein-specific antibodies would help to uncover the distribution and propagation of the ALS-linked proteins, and to design a therapeutic strategy to clear such species. Herein we review the literature regarding the mislocalization of ALS-linked proteins, especially mutant SOD1 and TDP-43 species, and discuss the rationale of molecular targeting strategies including immunotherapy

    The carboxy-terminal fragment of α1A calcium channel preferentially aggregates in the cytoplasm of human spinocerebellar ataxia type 6 Purkinje cells

    Get PDF
    Spinocerebellar ataxia type 6 (SCA6) is an autosomal dominant neurodegenerative disease caused by a small polyglutamine (polyQ) expansion (control: 4–20Q; SCA6: 20–33Q) in the carboxyl(C)-terminal cytoplasmic domain of the α1A voltage-dependent calcium channel (Cav2.1). Although a 75–85-kDa Cav2.1 C-terminal fragment (CTF) is toxic in cultured cells, its existence in human brains and its role in SCA6 pathogenesis remains unknown. Here, we investigated whether the small polyQ expansion alters the expression pattern and intracellular distribution of Cav2.1 in human SCA6 brains. New antibodies against the Cav2.1 C-terminus were used in immunoblotting and immunohistochemistry. In the cerebella of six control individuals, the CTF was detected in sucrose- and SDS-soluble cytosolic fractions; in the cerebella of two SCA6 patients, it was additionally detected in SDS-insoluble cytosolic and sucrose-soluble nuclear fractions. In contrast, however, the CTF was not detected either in the nuclear fraction or in the SDS-insoluble cytosolic fraction of SCA6 extracerebellar tissues, indicating that the CTF being insoluble in the cytoplasm or mislocalized to the nucleus only in the SCA6 cerebellum. Immunohistochemistry revealed abundant aggregates in cell bodies and dendrites of SCA6 Purkinje cells (seven patients) but not in controls (n = 6). Recombinant CTF with a small polyQ expansion (rCTF-Q28) aggregated in cultured PC12 cells, but neither rCTF-Q13 (normal-length polyQ) nor full-length Cav2.1 with Q28 did. We conclude that SCA6 pathogenesis may be associated with the CTF, normally found in the cytoplasm, being aggregated in the cytoplasm and additionally distributed in the nucleus

    An mRNA-protein Fusion at N-terminus for Evolutionary Protein Engineering

    No full text
    A novel method to link a nascent protein (phenotype) to its mRNA (genotype) covalently through the N-terminus was developed. The mRNA harboring amber stop codon at just downstream of initiation site was hybridized with hydrazide-modified ssDNA at upstream of coding region and was ligated to the DNA. This construct was then modified with 4-acetyl-phenylalanyl amber suppressor tRNA. This modified construct was fused with the nascent protein via the phenylalanine derivative when the mRNA uses the amber suppressor tRNA to decode the amber stop codon. The obtained fusion molecule was used successfully in selective enrichment experiments. It will be applicable for high-through-put screening in evolutionary protein engineering. In contrast to fusion molecules generated by other methods in which the protein is linked to genotype molecule through the C- terminus, our fusion molecule will serve to select a protein for which the C-terminus is essential to be active.</p

    Richard Strauss:„Morgen!" Eine Interpretation

    No full text

    The Most Uncreative Examinee: A First Step toward Wide Coverage Natural Language Math Problem Solving

    No full text
    We report on a project aiming at developing a system that solves a wide range of math problems written in natural language. In the system, formal analysis of natural language semantics is coupled with automated reasoning technologies including computer algebra, using logic as their common language. We have developed a prototype system that accepts as its input a linguistically annotated problem text. Using the prototype system as a reference point, we analyzed real university entrance examination problems from the viewpoint of end-to-end automated reasoning. Further, evaluation on entrance exam mock tests revealed that an optimistic estimate of the system’s performance already matches human averages on a few test sets
    corecore