192 research outputs found

    New methods for finding disease-susceptibility genes: impact and potential

    Get PDF
    Improved techniques for defining disease-gene location and evaluating the biological candidacy of regional transcripts will hasten disease-gene discovery

    FRAGS: estimation of coding sequence substitution rates from fragmentary data

    Get PDF
    BACKGROUND: Rates of substitution in protein-coding sequences can provide important insights into evolutionary processes that are of biomedical and theoretical interest. Increased availability of coding sequence data has enabled researchers to estimate more accurately the coding sequence divergence of pairs of organisms. However the use of different data sources, alignment protocols and methods to estimate substitution rates leads to widely varying estimates of key parameters that define the coding sequence divergence of orthologous genes. Although complete genome sequence data are not available for all organisms, fragmentary sequence data can provide accurate estimates of substitution rates provided that an appropriate and consistent methodology is used and that differences in the estimates obtainable from different data sources are taken into account. RESULTS: We have developed FRAGS, an application framework that uses existing, freely available software components to construct in-frame alignments and estimate coding substitution rates from fragmentary sequence data. Coding sequence substitution estimates for human and chimpanzee sequences, generated by FRAGS, reveal that methodological differences can give rise to significantly different estimates of important substitution parameters. The estimated substitution rates were also used to infer upper-bounds on the amount of sequencing error in the datasets that we have analysed. CONCLUSION: We have developed a system that performs robust estimation of substitution rates for orthologous sequences from a pair of organisms. Our system can be used when fragmentary genomic or transcript data is available from one of the organisms and the other is a completely sequenced genome within the Ensembl database. As well as estimating substitution statistics our system enables the user to manage and query alignment and substitution data

    Simplified ontologies allowing comparison of developmental mammalian gene expression

    Get PDF
    The Developmental eVOC ontologies presented are simplified orthogonal ontologies describing the temporal and spatial distribution of developmental human and mouse anatomy

    Computational selection and prioritization of candidate genes for Fetal Alcohol Syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fetal alcohol syndrome (FAS) is a serious global health problem and is observed at high frequencies in certain South African communities. Although <it>in utero </it>alcohol exposure is the primary trigger, there is evidence for genetic- and other susceptibility factors in FAS development. No genome-wide association or linkage studies have been performed for FAS, making computational selection and -prioritization of candidate disease genes an attractive approach.</p> <p>Results</p> <p>10174 Candidate genes were initially selected from the whole genome using a previously described method, which selects candidate genes according to their expression in disease-affected tissues. Hereafter candidates were prioritized for experimental investigation by investigating criteria pertinent to FAS and binary filtering. 29 Criteria were assessed by mining various database sources to populate criteria-specific gene lists. Candidate genes were then prioritized for experimental investigation using a binary system that assessed the criteria gene lists against the candidate list, and candidate genes were scored accordingly. A group of 87 genes was prioritized as candidates and for future experimental validation. The validity of the binary prioritization method was assessed by investigating the protein-protein interactions, functional enrichment and common promoter element binding sites of the top-ranked genes.</p> <p>Conclusion</p> <p>This analysis highlighted a list of strong candidate genes from the TGF-β, MAPK and Hedgehog signalling pathways, which are all integral to fetal development and potential targets for alcohol's teratogenic effect. We conclude that this novel bioinformatics approach effectively prioritizes credible candidate genes for further experimental analysis.</p

    An overview of the wcd EST clustering tool

    Get PDF
    Summary: The wcd system is an open source tool for clustering expressed sequence tags (EST) and other DNA and RNA sequences. wcd allows efficient all-versus-all comparison of ESTs using either the d 2 distance function or edit distance, improving existing implementations of d 2. It supports merging, refinement and reclustering of clusters. It is ‘drop in’ compatible with the StackPack clustering package. wcd supports parallelization under both shared memory and cluster architectures. It is distributed with an EMBOSS wrapper allowing wcd to be installed as part of an EMBOSS installation (and so provided by a web server)

    Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls

    Get PDF
    Clinical adoption of human genome sequencing requires methods that output genotypes with known accuracy at millions or billions of positions across a genome. Because of substantial discordance among calls made by existing sequencing methods and algorithms, there is a need for a highly accurate set of genotypes across a genome that can be used as a benchmark. Here we present methods to make high-confidence, single-nucleotide polymorphism (SNP), indel and homozygous reference genotype calls for NA12878, the pilot genome for the Genome in a Bottle Consortium. We minimize bias toward any method by integrating and arbitrating between 14 data sets from five sequencing technologies, seven read mappers and three variant callers. We identify regions for which no confident genotype call could be made, and classify them into different categories based on reasons for uncertainty. Our genotype calls are publicly available on the Genome Comparison and Analytic Testing website to enable real-time benchmarking of any method

    The contribution of exon-skipping events on chromosome 22 to protein coding diversity

    Get PDF
    Completion of the human genome sequence provides evidence for a gene count with lower bound 30,000–40,000. Significant protein complexity may derive in part from multiple transcript isoforms. Recent EST based studies have revealed that alternate transcription, including alternative splicing, polyadenylation and transcription start sites, occurs within at least 30–40% of human genes. Transcript form surveys have yet to integrate the genomic context, expression, frequency, and contribution to protein diversity of isoform variation. We determine here the degree to which protein coding diversity may be influenced by alternate expression of transcripts by exhaustive manual confirmation of genome sequence annotation, and comparison to available transcript data to accurately associate skipped exon isoforms with genomic sequence. Relative expression levels of transcripts are estimated from EST database representation. The rigorous in silico method accurately identifies exon skipping using verified genome sequence. 545 genes have been studied in this first hand-curated assessment of exon skipping on chromosome 22

    Prioritizing genes of potential relevance to diseases affected by sex hormones: an example of Myasthenia Gravis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>About 5% of western populations are afflicted by autoimmune diseases many of which are affected by sex hormones. Autoimmune diseases are complex and involve many genes. Identifying these disease-associated genes contributes to development of more effective therapies. Also, association studies frequently imply genomic regions that contain disease-associated genes but fall short of pinpointing these genes. The identification of disease-associated genes has always been challenging and to date there is no universal and effective method developed.</p> <p>Results</p> <p>We have developed a method to prioritize disease-associated genes for diseases affected strongly by sex hormones. Our method uses various types of information available for the genes, but no information that directly links genes with the disease. It generates a score for each of the considered genes and ranks genes based on that score. We illustrate our method on early-onset myasthenia gravis (MG) using genes potentially controlled by estrogen and localized in a genomic segment (which contains the MHC and surrounding region) strongly associated with MG. Based on the considered genomic segment 283 genes are ranked for their relevance to MG and responsiveness to estrogen. The top three ranked genes, HLA-G, TAP2 and HLA-DRB1, are implicated in autoimmune diseases, while TAP2 is associated with SNPs characteristic for MG. Within the top 35 prioritized genes our method identifies 90% of the 10 already known MG-associated genes from the considered region without using any information that directly links genes to MG. Among the top eight genes we identified HLA-G and TUBB as new candidates. We show that our <it>ab-initio </it>approach outperforms the other methods for prioritizing disease-associated genes.</p> <p>Conclusion</p> <p>We have developed a method to prioritize disease-associated genes under the potential control of sex hormones. We demonstrate the success of this method by prioritizing the genes localized in the MHC and surrounding region and evaluating the role of these genes as potential candidates for estrogen control as well as MG. We show that our method outperforms the other methods. The method has a potential to be adapted to prioritize genes relevant to other diseases.</p

    Rapid evolution of cancer/testis genes on the X chromosome

    Get PDF
    BACKGROUND: Cancer/testis (CT) genes are normally expressed only in germ cells, but can be activated in the cancer state. This unusual property, together with the finding that many CT proteins elicit an antigenic response in cancer patients, has established a role for this class of genes as targets in immunotherapy regimes. Many families of CT genes have been identified in the human genome, but their biological function for the most part remains unclear. While it has been shown that some CT genes are under diversifying selection, this question has not been addressed before for the class as a whole. RESULTS: To shed more light on this interesting group of genes, we exploited the generation of a draft chimpanzee (Pan troglodytes) genomic sequence to examine CT genes in an organism that is closely related to human, and generated a high-quality, manually curated set of human:chimpanzee CT gene alignments. We find that the chimpanzee genome contains homologues to most of the human CT families, and that the genes are located on the same chromosome and at a similar copy number to those in human. Comparison of putative human:chimpanzee orthologues indicates that CT genes located on chromosome X are diverging faster and are undergoing stronger diversifying selection than those on the autosomes or than a set of control genes on either chromosome X or autosomes. CONCLUSION: Given their high level of diversifying selection, we suggest that CT genes are primarily responsible for the observed rapid evolution of protein-coding genes on the X chromosome
    corecore