5 research outputs found

    First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere

    No full text
    EUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of the 25th of August 2014 from Timmins, Canada. The flight ended successfully after maintaining the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour underflight using a helicopter equipped with three UV light sources (LED, xenon flasher and laser) to perform an inflight calibration and examine the detectors capability to measure tracks moving at the speed of light. We describe the helicopter laser system and details of the underflight as well as how the laser tracks were recorded and found in the data. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. Finally, we present a first reconstruction of the direction of the laser tracks relative to the detector

    Contributions to the 36th International Cosmic Ray Conference (ICRC 2019) of the JEM-EUSO Collaboration

    No full text
    Compilation of papers presented by the JEM-EUSO Collaboration at the 36th International Cosmic Ray Conference (ICRC), held July 24 through August 1, 2019 in Madison, Wisconsin.Comment: links to the 24 papers published in arXi

    EUSO-TA – First results from a ground-based EUSO telescope

    Get PDF
    International audienceEUSO-TA is a ground-based telescope, installed at the Telescope Array (TA) site in Black Rock Mesa, Utah, USA. This is the first detector to successfully use a Fresnel lens based optical system and multi-anode photomultipliers (64 channels per tube, 2304 channels encompassing a 10.6° × 10.6° field of view) for detection of Ultra High Energy Cosmic Rays (UHECR). The telescope is located in front of one of the fluorescence detectors of the TA experiment. Since its installation in 2013, the detector has observed several ultra-high energy cosmic ray events and, in addition, meteors. The limiting magnitude of 5.5 on summed frames ( ∼ 3 ms) has been established. Measurements of the UV night sky emission in different conditions and moon phases and positions have been completed. The performed observations serve as a proof of concept for the future application of this detector technology

    Ultra-violet imaging of the night-time earth by EUSO-Balloon towards space-based ultra-high energy cosmic ray observations

    Get PDF
    International audienceThe JEM-EUSO (Joint Experiment Missions for the Extreme Universe Space Observatory) program aims at developing Ultra-Violet (UV) fluorescence telescopes for efficient detections of Extensive Air Showers (EASs) induced by Ultra-High Energy Cosmic Rays (UHECRs) from satellite orbit. In order to demonstrate key technologies for JEM-EUSO, we constructed the EUSO-Balloon instrument that consists of a ∼1 m 2 refractive telescope with two Fresnel lenses and an array of multi-anode photo-multiplier tubes at the focus. Distinguishing it from the former balloon-borne experiments, EUSO-Balloon has the capabilities of single photon counting with a gate time of 2.3 µs and of imaging with a total of 2304 pixels. As a pathfinder mission, the instrument was launched for an 8 h stratospheric flight on a moonless night in August 2014 over Timmins, Canada. In this work, we analyze the count rates over ∼2.5 h intervals. The measurements are of diffuse light, e.g. of airglow emission, back-scattered from the Earth’s atmosphere as well as artificial light sources. Count rates from such diffuse light are a background for EAS detections in future missions and relevant factor for the analysis of EAS events. We also obtain the geographical distribution of the count rates over a ∼780 km 2 area along the balloon trajectory. In developed areas, light sources such as the airport, mines, and factories are clearly identified. This demonstrates the correct location of signals that will be required for the EAS analysis in future missions. Although a precise determination of count rates is relevant for the existing instruments, the absolute intensity of diffuse light is deduced for the limited conditions by assuming spectra models and considering simulations of the instrument response. Based on the study of diffuse light by EUSO-Balloon, we also discuss the implications for coming pathfinders and future space-based UHECR observation missions

    First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere

    No full text
    corecore