3,128 research outputs found

    Radiation Hardness of Thin Low Gain Avalanche Detectors

    Full text link
    Low Gain Avalanche Detectors (LGAD) are based on a n++-p+-p-p++ structure where an appropriate doping of the multiplication layer (p+) leads to high enough electric fields for impact ionization. Gain factors of few tens in charge significantly improve the resolution of timing measurements, particularly for thin detectors, where the timing performance was shown to be limited by Landau fluctuations. The main obstacle for their operation is the decrease of gain with irradiation, attributed to effective acceptor removal in the gain layer. Sets of thin sensors were produced by two different producers on different substrates, with different gain layer doping profiles and thicknesses (45, 50 and 80 um). Their performance in terms of gain/collected charge and leakage current was compared before and after irradiation with neutrons and pions up to the equivalent fluences of 5e15 cm-2. Transient Current Technique and charge collection measurements with LHC speed electronics were employed to characterize the detectors. The thin LGAD sensors were shown to perform much better than sensors of standard thickness (~300 um) and offer larger charge collection with respect to detectors without gain layer for fluences <2e15 cm-2. Larger initial gain prolongs the beneficial performance of LGADs. Pions were found to be more damaging than neutrons at the same equivalent fluence, while no significant difference was found between different producers. At very high fluences and bias voltages the gain appears due to deep acceptors in the bulk, hence also in thin standard detectors

    Recent Technological Developments on LGAD and iLGAD Detectors for Tracking and Timing Applications

    Get PDF
    This paper reports the last technological development on the Low Gain Avalanche Detector (LGAD) and introduces a new architecture of these detectors called inverse-LGAD (iLGAD). Both approaches are based on the standard Avalanche Photo Diodes (APD) concept, commonly used in optical and X-ray detection applications, including an internal multiplication of the charge generated by radiation. The multiplication is inherent to the basic n++-p+-p structure, where the doping profile of the p+ layer is optimized to achieve high field and high impact ionization at the junction. The LGAD structures are optimized for applications such as tracking or timing detectors for high energy physics experiments or medical applications where time resolution lower than 30 ps is required. Detailed TCAD device simulations together with the electrical and charge collection measurements are presented through this work.Comment: Keywords: silicon detectors, avalanche multiplication, timing detectors, tracking detectors. 8 pages. 8 Figure

    Classification of Possible Finite-Time Singularities by Functional Renormalization

    Full text link
    Starting from a representation of the early time evolution of a dynamical system in terms of the polynomial expression of some observable f (t) as a function of the time variable in some interval 0 < t < T, we investigate how to extrapolate/forecast in some optimal stability sense the future evolution of f(t) for time t>T. Using the functional renormalization of Yukalov and Gluzman, we offer a general classification of the possible regimes that can be defined based on the sole knowledge of the coefficients of a second-order polynomial representation of the dynamics. In particular, we investigate the conditions for the occurence of finite-time singularities from the structure of the time series, and quantify the critical time and the functional nature of the singularity when present. We also describe the regimes when a smooth extremum replaces the singularity and determine its position and amplitude. This extends previous works by (1) quantifying the stability of the functional renormalization method more accurately, (2) introducing new global constraints in terms of moments and (3) going beyond the ``mean-field'' approximation.Comment: Latex document of 18 pages + 7 ps figure

    Gas Emission Spectrum in the Irr Galaxy IC 10

    Full text link
    Spectroscopic long-slit observations of the dwarf Irr galaxy IC 10 were conducted at the 6-m Special Astrophysical Observatory telescope with the SCORPIO focal reducer. The ionized-gas emission spectra in the regions of intense current star formation were obtained for a large number of regions in IC 10. The relative abundances of oxygen, N+, and S+ in about twenty HII regions and in the synchrotron superbubble were estimated. We found that the galaxy-averaged oxygen abundance is 12 + log(O/H) = 8.17 +- 0.35 and the metallicity is Z = 0.18 +- 0.14 Z_sun. Our abundances estimated from the strong emission lines are found to be more reliable than those obtained by comparing diagnostic diagrams with photoionization models.Comment: Abridged; accepted in Astronomy Letter

    The nuclear receptor LXRα controls the functional specialization of splenic macrophages.

    Get PDF
    Macrophages are professional phagocytic cells that orchestrate innate immune responses and have considerable phenotypic diversity at different anatomical locations. However, the mechanisms that control the heterogeneity of tissue macrophages are not well characterized. Here we found that the nuclear receptor LXRα was essential for the differentiation of macrophages in the marginal zone (MZ) of the spleen. LXR-deficient mice were defective in the generation of MZ and metallophilic macrophages, which resulted in abnormal responses to blood-borne antigens. Myeloid-specific expression of LXRα or adoptive transfer of wild-type monocytes restored the MZ microenvironment in LXRα-deficient mice. Our results demonstrate that signaling via LXRα in myeloid cells is crucial for the generation of splenic MZ macrophages and identify an unprecedented role for a nuclear receptor in the generation of specialized macrophage subsets

    Estudio preliminar de accesibilidad en sitios web de noticias del NEA Argentino

    Get PDF
    La aplicación de estándares para la construcción de sitios Web representa una forma de iniciar un proyecto innovador de desarrollo de software con posibilidades de crecimiento y perdurabilidad en el tiempo. La iniciativa centrada en mejorar la accesibilidad WEB establecida por la WAI (Web Accessibility Initiative), tiene como objetivo definir las pautas que faciliten el acceso de las personas con discapacidad (visuales, auditivas, motrices y cognitivas o relacionadas con el lenguaje) o aquellos colectivos (personas de edad avanzada, medios rurales, niños de escasos recursos, etc.) afectados por el desconocimiento o falta de acceso a las TIC. Se estudiaron y analizaron diez de los doce procedimientos especificados por Segovia sobre las normas WAI, en sitios web de noticias de las provincias del NEA: Corrientes, Chaco, Misiones y Formosa. La metodología aplicada consistió en: i) seleccionar sitios de noticias ii) aplicar los procedimientos seleccionados a cada uno de los sitios web, iii) sistematizar y procesar los datos, iv) analizar los resultados y elaborar conclusiones y/o recomendaciones. La sistematización de los datos relevados permitirá elaborar una propuesta de modificación o superación de los aspectos tratados. A modo de conclusión preliminar se considera que en los sitios de la región NEA escasamente se aplican los conceptos de accesibilidad. Podría suponerse como consecuencia del desconocimiento de estos conceptos y pautas diseñadas por la W3C.Sociedad Argentina de Informática e Investigación Operativ

    Formation of convective cells in the scrape-off layer of the CASTOR tokamak

    Get PDF
    Understanding of the scrape-off layer (SOL) physics in tokamaks requires diagnostics with sufficient temporal and spatial resolution. This contribution describes results of experiments performed in the SOL of the CASTOR tokamak (R=40 cm, a = 6 cm) by means of a ring of 124 Langmuir probes surrounding the whole poloidal cross section. The individual probes measure either the ion saturation current of the floating potential with the spatial resolution up to 3 mm. Experiments are performed in a particular magnetic configuration, characterized by a long parallel connection length in the SOL, L_par ~q2piR. We report on measurements in discharges, where the edge electric field is modified by inserting a biased electrode into the edge plasma. In particular, a complex picture is observed, if the biased electrode is located inside the SOL. The poloidal distribution of the floating potential appears to be strongly non-uniform at biasing. The peaks of potential are observed at particular poloidal angles. This is interpreted as formation of a biased flux tube, which emanates from the electrode along the magnetic field lines and snakes q times around the torus. The resulting electric field in the SOL is 2-dimensional, having the radial as well as the poloidal component. It is demonstrated that the poloidal electric field E_pol convects the edge plasma radially due to the E_pol x B_T drift either inward or outward depending on its sign. The convective particle flux is by two orders of magnitude larger than the fluctuation-induced one and consequently dominates.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Quantum statistical metastability for a finite spin

    Full text link
    We study quantum-classical escape-rate transitions for uniaxial and biaxial models with finite spins S=10 (such as Mn_12Ac and Fe_8) and S=100 by a direct numerical approach. At second-order transitions the level making a dominant contribution into thermally assisted tunneling changes gradually with temperature whereas at first-order transitions a group of levels is skipped. For finite spins, the quasiclassical boundaries between first- and second-order transitions are shifted, favoring a second-order transition: For Fe_8 in zero field the transition should be first order according to a theory with S \to \infty, but we show that there are no skipped levels at the transition. Applying a field along the hard axis in Fe_8 makes transition the strongest first order. For the same model with S=100 we confirmed the existence of a region where a second-order transition is followed by a first-order transition [X. Martines Hidalgo and E. M. Chudnovsky, J. Phys.: Condensed Matter (in press)].Comment: 7 Phys. Rev. pages, 10 figures, submitted to PR
    • …
    corecore