2,972 research outputs found
Exchange anisotropy pinning of a standing spin wave mode
Standing spin waves in a thin film are used as sensitive probes of interface
pinning induced by an antiferromagnet through exchange anisotropy. Using
coplanar waveguide ferromagnetic resonance, pinning of the lowest energy spin
wave thickness mode in Ni(80)Fe(20)/Ir(25)Mn(75) exchange biased bilayers was
studied for a range of IrMn thicknesses. We show that pinning of the standing
mode can be used to amplify, relative to the fundamental resonance, frequency
shifts associated with exchange bias. The shifts provide a unique `fingerprint'
of the exchange bias and can be interpreted in terms of an effective
ferromagnetic film thickness and ferromagnet/antiferromagnet interface
anisotropy. Thermal effects are studied for ultra-thin antiferromagnetic
Ir(25)Mn(75) thicknesses, and the onset of bias is correlated with changes in
the pinning fields. The pinning strength magnitude is found to grow with
cooling of the sample, while the effective ferromagnetic film thickness
simultaneously decreases. These results suggest that exchange bias involves
some deformation of magnetic order in the interface region.Comment: 7 pages, 7 figure
Hypersaline microbial self-powered biosensor with increased sensitivity
The on-line, self-powered monitoring of the organic carbon content in hypersaline solutions (e.g. chemical oxygen demand, COD) based on a microbial biosensor would avoid the generation of toxic waste, originated by common COD analytical methods, and reduce the release of pollutants into the environment. Herein, a disposable cathode was applied to microbial fuel cells (MFCs) for the environmental friendly monitoring of the COD reaching a sensitivity one order of magnitude higher compared to the MFC with an air breathing cathode. Additionally, the entrapment of bacterial cells in alginate-capsules ensured a considerable linear range (up to approximately 10,000 mg COD L−1), providing opportunities for the wide application of the device to hypersaline solutions characterized by different origins and contamination levels
Toward a New Kind of Asteroseismic Grid Fitting
Recent developments in instrumentation (e.g., in particular the Kepler and
CoRoT satellites) provide a new opportunity to improve the models of stellar
pulsations. Surface layers, rotation, and magnetic fields imprint erratic
frequency shifts, trends, and other non-random behavior in the frequency
spectra. As our observational uncertainties become smaller, these are
increasingly important and difficult to deal with using standard fitting
techniques. To improve the models, new ways to compare their predictions with
observations need to be conceived. In this paper we present a completely
probabilistic (Bayesian) approach to asteroseismic model fitting. It allows for
varying degrees of prior mode identification, corrections for the discrete
nature of the grid, and most importantly implements a treatment of systematic
errors, such as the "surface effects." It removes the need to apply semi-
empirical corrections to the observations prior to fitting them to the models
and results in a consistent set of probabilities with which the model physics
can be probed and compared. As an example, we show a detailed asteroseismic
analysis of the Sun. We find a most probable solar age, including a 35 +- 5
million year pre-main sequence phase, of 4.591 billion years, and initial
element mass fractions of X_0 = 0.72, Y_0 = 0.264, Z_0 = 0.016, consistent with
recent asteroseismic and non-asteroseismic studies.Comment: 15 pages, 5 figures, accepted for publication in The Astrophysical
Journal; v2 contains minor changes made in the proofs (updated references &
corrected typos
Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study
Recent advances in GPS data processing have demonstrated that ground-based GPS receivers are capable of detecting ionospheric TEC perturbations caused by surface-generated Rayleigh, acoustic and gravity waves. There have been a number of publications discussing TEC perturbations immediately following the M 9.0 Tohoku earthquake in Japan on March 11, 2011. Most investigators have focused on the ionospheric responses up to a few hours following the earthquake and tsunami. In our research, in addition to March 11, 2011 we investigate global ionospheric TEC perturbations a day before and after the event. We also compare indices of geomagnetic activity on all three days with perturbations in TEC, revealing strong geomagnetic storm conditions that are also apparent in processed GEONET TEC observations. In addition to the traveling ionospheric disturbances (TIDs)produced by the earthquake and tsunami, we also detect “regular” TIDs across Japan about 5 hours following the Tohoku event, concluding these are likely due to geomagnetic activity. The variety of observed TEC perturbations are consistent with tsunami-generated gravity waves, auroral activity, regular TIDs and equatorial fluctuations induced by increased geomagnetic activity. We demonstrate our capabilities to monitor TEC fluctuations using JPL’s real-time Global Assimilative Ionospheric Model (GAIM) system. We show that a real-time global TEC monitoring network is able to detect the acoustic and gravity waves generated by the earthquake and tsunami. With additional real-time stations deployed, this new capability has the potential to provide real-time monitoring of TEC perturbations that could potentially serve as a plug-in to enhance existing early warning systems
Diffusive and ballistic current spin-polarization in magnetron-sputtered L1o-ordered epitaxial FePt
We report on the structural, magnetic, and electron transport properties of a
L1o-ordered epitaxial iron-platinum alloy layer fabricated by
magnetron-sputtering on a MgO(001) substrate. The film studied displayed a long
range chemical order parameter of S~0.90, and hence has a very strong
perpendicular magnetic anisotropy. In the diffusive electron transport regime,
for temperatures ranging from 2 K to 258 K, we found hysteresis in the
magnetoresistance mainly due to electron scattering from magnetic domain walls.
At 2 K, we observed an overall domain wall magnetoresistance of about 0.5 %. By
evaluating the spin current asymmetry alpha = sigma_up / sigma_down, we were
able to estimate the diffusive spin current polarization. At all temperatures
ranging from 2 K to 258 K, we found a diffusive spin current polarization of >
80%. To study the ballistic transport regime, we have performed point-contact
Andreev-reflection measurements at 4.2 K. We obtained a value for the ballistic
current spin polarization of ~42% (which compares very well with that of a
polycrystalline thin film of elemental Fe). We attribute the discrepancy to a
difference in the characteristic scattering times for oppositely spin-polarized
electrons, such scattering times influencing the diffusive but not the
ballistic current spin polarization.Comment: 22 pages, 13 figure
Larval dispersal in a changing ocean with an emphasis on upwelling regions
Dispersal of benthic species in the sea is mediated primarily through small, vulnerable larvae that must survive minutes to months as members of the plankton community while being transported by strong, dynamic currents. As climate change alters ocean conditions, the dispersal of these larvae will be affected, with pervasive ecological and evolutionary consequences. We review the impacts of oceanic changes on larval transport, physiology, and behavior. We then discuss the implications for population connectivity and recruitment and evaluate life history strategies that will affect susceptibility to the effects of climate change on their dispersal patterns, with implications for understanding selective regimes in a future ocean. We find that physical oceanographic changes will impact dispersal by transporting larvae in different directions or inhibiting their movements while changing environmental factors, such as temperature, pH, salinity, oxygen, ultraviolet radiation, and turbidity, will affect the survival of larvae and alter their behavior. Reduced dispersal distance may make local adaptation more likely in well-connected populations with high genetic variation while reduced dispersal success will lower recruitment with implications for fishery stocks. Increased dispersal may spur adaptation by increasing genetic diversity among previously disconnected populations as well as increasing the likelihood of range expansions. We hypothesize that species with planktotrophic (feeding), calcifying, or weakly swimming larvae with specialized adult habitats will be most affected by climate change. We also propose that the adaptive value of retentive larval behaviors may decrease where transport trajectories follow changing climate envelopes and increase where transport trajectories drive larvae toward increasingly unsuitable conditions. Our holistic framework, combined with knowledge of regional ocean conditions and larval traits, can be used to produce powerful predictions of expected impacts on larval dispersal as well as the consequences for connectivity, range expansion, or recruitment. Based on our findings, we recommend that future studies take a holistic view of dispersal incorporating biological and oceanographic impacts of climate change rather than solely focusing on oceanography or physiology. Genetic and paleontological techniques can be used to examine evolutionary impacts of altered dispersal in a future ocean, while museum collections and expedition records can inform modern-day range shifts
Conventional vs. Microwave-or mechanically-assisted synthesis of dihomooxacalix[4]arene phthalimides: NMR, X-ray and photophysical analysis
Direct O-alkylation of p-tert-butyldihomooxacalix[4]arene (1) with N-(bromopropyl)-or N-(bromoethyl)phthalimides and K2 CO3 in acetonitrile was conducted under conventional heating (reflux) and using microwave irradiation and ball milling methodologies. The reactions afforded mono-and mainly distal di-substituted derivatives in the cone conformation, in a total of eight compounds. They were isolated by column chromatography, and their conformations and the substitution patterns were established by NMR spectroscopy (1 H,13 C, COSY and NOESY experiments). The X-ray structures of four dihomooxacalix[4]arene phthalimide derivatives (2a, 3a, 3b and 5a) are reported, as well as their photophysical properties. The microwave (MW)-assisted alkylations drastically reduced the reaction times (from days to less than 45 min) and produced higher yields of both 1,3-di-substituted phthalimides (3a and 6a) with higher selectivity. Ball milling did not reveal to be a good method for this kind of reaction
Pulsed rotating supersonic source used with merged molecular beams
We describe a pulsed rotating supersonic beam source, evolved from an
ancestral device [M. Gupta and D. Herschbach, J. Phys. Chem. A 105, 1626
(2001)]. The beam emerges from a nozzle near the tip of a hollow rotor which
can be spun at high-speed to shift the molecular velocity distribution downward
or upward over a wide range. Here we consider mostly the slowing mode.
Introducing a pulsed gas inlet system, cryocooling, and a shutter gate
eliminated the main handicap of the original device, in which continuous gas
flow imposed high background pressure. The new version provides intense pulses,
of duration 0.1-0.6 ms (depending on rotor speed) and containing ~10^12
molecules at lab speeds as low as 35 m/s and ~ 10^15 molecules at 400 m/s.
Beams of any molecule available as a gas can be slowed (or speeded); e.g., we
have produced slow and fast beams of rare gases, O2, Cl2, NO2, NH3, and SF6.
For collision experiments, the ability to scan the beam speed by merely
adjusting the rotor is especially advantageous when using two merged beams. By
closely matching the beam speeds, very low relative collision energies can be
attained without making either beam very slow.Comment: 26 pages, 10 figure
- …