99 research outputs found

    A Numerical Model of Crossed Andreev Reflection and Charge Imbalance

    Full text link
    We present a numerical model of local and nonlocal transport properties in a lateral spin valve structure consisting of two magnetic electrodes in contact with a third perpendicular superconducting electrode. By considering the transport paths for a single electron incident at the local F/S interface - in terms of probabilities of crossed or local Andreev reflection, elastic cotunneling or quasiparticle transport - we show that this leads to nonlocal charge imbalance. We compare this model with experimental data from an aluminum-permalloy (Al/Py) lateral spin valve geometry device and demonstrate the effectiveness of this simple approach in replicating experimental behavior.Comment: 9 pages, 14 figure

    A Legacy of Supremacy: Prison, Power, and the Carceral Nation

    Get PDF
    This thesis focuses on the relationship between the prison system and the history of institutionalized racism in the United States. It begins with a detailed historical and political analysis of the criminal justice system in relation to race/ethnicity from the abolition of slavery in the nineteenth century into a modern day context. The ideologies birthed from the abolition of slavery that contributed to the structure of the United States penal system are paired with practices of contemporary mass incarceration. The examination of the historical in conjunction with the present shows a clear trajectory of how the U.S. private and public prison system took on many of the roles once held by slavery. A look into contemporary practices of mass incarceration includes the role of the private prison as a way to profit from racism, as well as to expand the system. The role of free labor is central to these connections, as it is the historical constant both in the forms of antebellum slavery as well as prison labor. Finally, with an understanding of the relationship between prison conditions and racism, this thesis concludes with the questioning of what positive changes can be made

    Genetic and epigenetic variation among inbred mouse littermates: identification of inter-individual differentially methylated regions

    Get PDF
    Additional file 4: Fig. S3. Candidate differentially methylated regions between littermates. The mm9 genome were searched for sites that had a methylation values significantly different between the Pseudoagouti, C57.1, C57.2 and C57.3 mice with at least 6 adjacent CpGs and a range of at least 20 %. For each site, the weighted average CpG methylation was calculated and used for clustering (unsupervised)

    Effects of Different Aerobic Training Techniques on Vital Capacity and Breath Hold

    Get PDF
    Athletes are constantly looking for ways to increase their lung capacity. The larger the lung capacity, the more air, specifically oxygen, can be taken in by the athlete. Thus, increasing lung capacity increases endurance, allowing athletes to perform at a higher level for longer periods of time without feeling tired. If lung capacity remains the same while duration or intensity of activity increases, oxygen intake remains the same and there is more stress on the heart to get more oxygen to muscles and remove waste (Rathi 2014). This study will test breath hold time and vital capacity in order to indirectly test endurance. Researchers have not previously explored the comparison between swimmers and soccer players before, so that is what this research intended to do. How long someone can hold their breath is indicative of how much oxygen they can take in which is important in improving endurance. Vital capacity is defined as the largest amount of air that can be maximally expired after a maximal inspiration (Al-Madfai Z. et al 2016). Vital capacity can be used to explain breath hold time by measuring the maximum amount of air that can be inhaled and expelled. Additionally, this study will measure respiratory rate. This study will attempt to determine whether systematic training used by swimmers does result in higher vital capacity and breath hold values compared to soccer players who use an interval style of training, and non-athletes, who have no training program. If this is true, the second phase of the study would go on to test whether systematic training is effective in increasing vital capacity and breath hold (and thus endurance) in soccer players and non-athletes. This could inform one group better ways to train and improve their vital capacity and therefore their endurance

    A Hybrid Magneto-Optic Capacitive Memory with Picosecond Writing Time

    Get PDF
    The long-term future of information storage requires the use of sustainable nanomaterials in architectures operating at high frequencies. Interfaces can play a key role in this pursuit via emergent functionalities that break out from conventional operation methods. Here, spin-filtering effects and photocurrents are combined at metal-molecular-oxide junctions in a hybrid magneto-capacitive memory. Light exposure of metal-fullerene-metal oxide devices results in spin-polarized charge trapping and the formation of a magnetic interface. Because the magnetism is generated by a photocurrent, the writing time is determined by exciton formation and splitting, electron hopping, and spin-dependent trapping. Transient absorption spectroscopy measurements show changes in the electronic states as a function of the magnetic history of the device within picoseconds of the optical pumping. The stored information is read using time-resolved scanning magneto optic Kerr effect measurements during microwave irradiation. The emergence of a magnetic interface in the picosecond timescale opens new paths of research to design hybrid magneto-optic structures operating at high frequencies for sensing, computing, and information storage

    Opposing transcriptional programs of KLF5 and AR emerge during therapy for advanced prostate cancer.

    Get PDF
    Endocrine therapies for prostate cancer inhibit the androgen receptor (AR) transcription factor. In most cases, AR activity resumes during therapy and drives progression to castration-resistant prostate cancer (CRPC). However, therapy can also promote lineage plasticity and select for AR-independent phenotypes that are uniformly lethal. Here, we demonstrate the stem cell transcription factor Krüppel-like factor 5 (KLF5) is low or absent in prostate cancers prior to endocrine therapy, but induced in a subset of CRPC, including CRPC displaying lineage plasticity. KLF5 and AR physically interact on chromatin and drive opposing transcriptional programs, with KLF5 promoting cellular migration, anchorage-independent growth, and basal epithelial cell phenotypes. We identify ERBB2 as a point of transcriptional convergence displaying activation by KLF5 and repression by AR. ERBB2 inhibitors preferentially block KLF5-driven oncogenic phenotypes. These findings implicate KLF5 as an oncogene that can be upregulated in CRPC to oppose AR activities and promote lineage plasticity

    Novel Androgen Receptor Coregulator GRHL2 Exerts Both Oncogenic and Antimetastatic Functions in Prostate Cancer.

    Get PDF
    Alteration to the expression and activity of androgen receptor (AR) coregulators in prostate cancer is an important mechanism driving disease progression and therapy resistance. Using a novel proteomic technique, we identified a new AR coregulator, the transcription factor Grainyhead-like 2 (GRHL2), and demonstrated its essential role in the oncogenic AR signaling axis. GRHL2 colocalized with AR in prostate tumors and was frequently amplified and upregulated in prostate cancer. Importantly, GRHL2 maintained AR expression in multiple prostate cancer model systems, was required for cell proliferation, enhanced AR's transcriptional activity, and colocated with AR at specific sites on chromatin to regulate genes relevant to disease progression. GRHL2 is itself an AR-regulated gene, creating a positive feedback loop between the two factors. The link between GRHL2 and AR also applied to constitutively active truncated AR variants (ARV), as GRHL2 interacted with and regulated ARVs and vice versa. These oncogenic functions of GRHL2 were counterbalanced by its ability to suppress epithelial-mesenchymal transition and cell invasion. Mechanistic evidence suggested that AR assisted GRHL2 in maintaining the epithelial phenotype. In summary, this study has identified a new AR coregulator with a multifaceted role in prostate cancer, functioning as an enhancer of the oncogenic AR signaling pathway but also as a suppressor of metastasis-related phenotypes. Cancer Res; 77(13); 3417-30. ©2017 AACR

    The development of a HAMstring InjuRy (HAMIR) index to mitigate injury risk through innovative imaging, biomechanics, and data analytics : Protocol for an observational cohort study

    Get PDF
    Background The etiology of hamstring strain injury (HSI) in American football is multi-factorial and understanding these risk factors is paramount to developing predictive models and guiding prevention and rehabilitation strategies. Many player-games are lost due to the lack of a clear understanding of risk factors and the absence of effective methods to minimize re-injury. This paper describes the protocol that will be followed to develop the HAMstring InjuRy (HAMIR) index risk prediction models for HSI and re-injury based on morphological, architectural, biomechanical and clinical factors in National Collegiate Athletic Association Division I collegiate football players. Methods A 3-year, prospective study will be conducted involving collegiate football student-athletes at four institutions. Enrolled participants will complete preseason assessments of eccentric hamstring strength, on-field sprinting biomechanics and muscle–tendon volumes using magnetic-resonance imaging (MRI). Athletic trainers will monitor injuries and exposure for the duration of the study. Participants who sustain an HSI will undergo a clinical assessment at the time of injury along with MRI examinations. Following completion of structured rehabilitation and return to unrestricted sport participation, clinical assessments, MRI examinations and sprinting biomechanics will be repeated. Injury recurrence will be monitored through a 6-month follow-up period. HAMIR index prediction models for index HSI injury and re-injury will be constructed. Discussion The most appropriate strategies for reducing risk of HSI are likely multi-factorial and depend on risk factors unique to each athlete. This study will be the largest-of-its-kind (1200 player-years) to gather detailed information on index and recurrent HSI, and will be the first study to simultaneously investigate the effect of morphological, biomechanical and clinical variables on risk of HSI in collegiate football athletes. The quantitative HAMIR index will be formulated to identify an athlete’s propensity for HSI, and more importantly, identify targets for injury mitigation, thereby reducing the global burden of HSI in high-level American football players. Trial Registration The trial is prospectively registered on ClinicalTrials.gov (NCT05343052; April 22, 2022)
    • …
    corecore