44 research outputs found

    First results from the Trondheim Norway momentum-flux meteor radar

    Get PDF
    第3回極域科学シンポジウム 横断セッション「中層大気・熱圏」 11月26日(月) 国立極地研究所 2階大会議

    Modelling the descent of nitric oxide during the elevated stratopause event of January 2013

    Get PDF
    Using simulations with a whole-atmosphere chemistry-climate model nudged by meteorological analyses, global satellite observations of nitrogen oxide (NO) and water vapour by the Sub-Millimetre Radiometer instrument (SMR), of temperature by the Microwave Limb Sounder (MLS), as well as local radar observations, this study examines the recent major stratospheric sudden warming accompanied by an elevated stratopause event (ESE) that occurred in January 2013. We examine dynamical processes during the ESE, including the role of planetary wave, gravity wave and tidal forcing on the initiation of the descent in the mesosphere-lower thermosphere (MLT) and its continuation throughout the mesosphere and stratosphere, as well as the impact of model eddy diffusion. We analyse the transport of NO and find the model underestimates the large descent of NO compared to SMR observations. We demonstrate that the discrepancy arises abruptly in the MLT region at a time when the resolved wave forcing and the planetary wave activity increase, just before the elevated stratopause reforms. The discrepancy persists despite doubling the model eddy diffusion. While the simulations reproduce an enhancement of the semi-diurnal tide following the onset of the 2013 SSW, corroborating new meteor radar observations at high northern latitudes over Trondheim (63.4^{\circ}N), the modelled tidal contribution to the forcing of the mean meridional circulation and to the descent is a small portion of the resolved wave forcing, and lags it by about ten days

    Seasonal variations of gravity wave activity in the lower stratosphere over an Antarctic Peninsula station

    Get PDF
    An 8 year series of 965 high-resolution radiosonde soundings over Rothera (67 degrees S, 68 degrees W) on the Antarctic Peninsula are used to study gravity wave characteristics in the lower stratosphere. The gravity wave energy is shown to have a seasonal variation with peaks at the equinoxes; the largest peak is around the spring equinox. During the winter months and extending into the spring, there is both an enhancement in the downward propagating wave activity and a reduction in the amount of critical-level filtering of upward propagating mountain waves. The horizontal propagation directions of the gravity waves were determined using hodographs. It was found that there is a predisposition toward northward and westward propagating waves above Rothera. This is in agreement with previous observations of gravity wave momentum flux in the wintertime mesosphere over Rothera. These results are consistent with a scenario whereby the stratospheric gravity wavefield above Rothera is determined by a combination of wind flow over topography-generating waves from below, and sources such as the edge of the polar stratospheric vortex-generating waves from above, especially during winter and spring

    Heavily loaded ferrite-polymer composites to produce high refractive index materials at centimetre wavelengths

    Get PDF
    A cold-pressing technique has been developed for fabricating composites composed of a polytetrafluoroethylene-polymer matrix and a wide range of volume-fractions of MnZn-ferrite filler (0%–80%). The electromagnetic properties at centimetre wavelengths of all prepared composites exhibited good reproducibility, with the most heavily loaded composites possessing simultaneously high permittivity (180 ± 10) and permeability (23±2). The natural logarithm of both the relative complex permittivity and permeability shows an approximately linear dependence with the volume fraction of ferrite. Thus, this simple method allows for the manufacture of bespoke materials required in the design and construction of devices based on the principles of transformation optics

    Microwaves: thin metal slits and liquid crystals

    Get PDF
    Copyright © 2004 Society of Photo-Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE Volume 5618, pp. 1-14 and is made available with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.Using liquid crystals to control the propagation of microwaves is a potentially interesting technology. By incorporating small amounts of liquid crystal in thin slat metal structures through which the microwaves may resonantly pass a whole new range of voltage tuned microwave devices are becoming available. Metallic sub-wavelength slit structures at microwave frequencies have been constructed which show Fabry-Perot type resonances in very thin slits. If the dielectric in such thin slits is an aligned liquid crystal it is found possible to voltage-control the resonant frequencies. Novel selective filters and structures for microwave beam steering have been fabricated leading to a new generation of liquid crystal controlled devices

    A Case Study of the Solar and Lunar Semidiurnal Tide Response to the 2013 Sudden Stratospheric Warming

    Get PDF
    This study investigates the response of the semidiurnal tide (SDT) to the 2013 major sudden stratospheric warming (SSW) event using meteor radar wind observations and mechanistic tidal model simulations. In the model, the background atmosphere is constrained to meteorological fields from the Navy Global Environmental Model—High Altitude analysis system. The solar (thermal) and lunar (gravitational) SDT components are forced by incorporating hourly temperature tendency fields from the ERA5 forecast model, and by specifying the M2 and N2 lunar gravitational potentials, respectively. The simulated SDT response is compared against meteor wind observations from the CMOR (43.3°N, 80.8°W), Collm (51.3°N, 13.0°E), and Kiruna (67.5°N, 20.1°E) radars, showing close agreement with the observed amplitude and phase variability. Numerical experiments investigate the individual roles of the solar and lunar SDT components in shaping the net SDT response. Further experiments isolate the impact of changing propagation conditions through the zonal mean background atmosphere, non-linear wave-wave interactions, and the SSW-induced stratospheric ozone redistribution. Results indicate that between 80 and 97 km altitude in the northern hemisphere mid-to-high latitudes the net SDT response is driven by the solar SDT component, which itself is shaped by changing propagation conditions through the zonal mean background atmosphere and by non-linear wave-wave interactions. In addition, it is demonstrated that as a result of the rapidly varying solar SDT during the SSW the contribution of the lunar SDT to the total measured tidal field can be significantly overestimated

    Optimizing hydroxyl airglow retrievals from long-slit astronomical spectroscopic observations

    Get PDF
    Astronomical spectroscopic observations from ground-based telescopes contain background emission lines from the terrestrial atmosphere's airglow. In the near infrared, this background is composed mainly of emission from Meinel bands of hydroxyl (OH), which is produced in highly excited vibrational states by reduction of ozone near 90km. This emission contains a wealth of information on the chemical and dynamical state of the Earth's atmosphere. However, observation strategies and data reduction processes are usually optimized to minimize the influence of these features on the astronomical spectrum. Here we discuss a measurement technique to optimize the extraction of the OH airglow signal itself from routine J-, H-, and K-band long-slit astronomical spectroscopic observations. As an example, we use data recorded from a point-source observation by the Nordic Optical Telescope's intermediate-resolution spectrograph, which has a spatial resolution of approximately 100m at the airglow layer. Emission spectra from the OH vibrational manifold from v′ = 9 down to v′ = 3, with signal-to-noise ratios up to 280, have been extracted from 10.8s integrations. Rotational temperatures representative of the background atmospheric temperature near 90km, the mesosphere and lower thermosphere region, can be fitted to the OH rotational lines with an accuracy of around 0.7K. Using this measurement and analysis technique, we derive a rotational temperature distribution with v′ that agrees with atmospheric model conditions and the preponderance of previous work. We discuss the derived rotational temperatures from the different vibrational bands and highlight the potential for both the archived and future observations, which are at unprecedented spatial and temporal resolutions, to contribute toward the resolution of long-standing problems in atmospheric physics

    The impact of energetic electron precipitation on mesospheric hydroxyl during a year of solar minimum

    Get PDF
    In 2008 a sequence of geomagnetic storms occurred triggered by high-speed solar wind streams from coronal holes. Improved estimates of precipitating fluxes of energetic electrons are derived from measurements on board the NOAA/POES 18 satellite using a new analysis technique. These fluxes are used to quantify the direct impact of energetic electron precipitation (EEP) during solar minimum on middle atmospheric hydroxyl (OH) measured from the Aura satellite. During winter, localized longitudinal density enhancements in the OH are observed over northern Russia and North America at corrected geomagnetic latitudes poleward of 55°. Although the northern Russia OH enhancement is closely associated with increased EEP at these longitudes, the strength and location of the North America enhancement appear to be unrelated to EEP. This OH density enhancement is likely due to vertical motion induced by atmospheric wave dynamics that transports air rich in atomic oxygen and atomic hydrogen downward into the middle atmosphere, where it plays a role in the formation of OH. In the Southern Hemisphere, localized enhancements of the OH density over West Antarctica can be explained by a combination of enhanced EEP due to the local minimum in Earth's magnetic field strength and atmospheric dynamics. Our findings suggest that even during solar minimum, there is substantial EEP-driven OH production. However, to quantify this effect, a detailed knowledge of where and when the precipitation occurs is required in the context of the background atmospheric dynamics.publishedVersio
    corecore