1,092 research outputs found

    Is There Enhanced Depletion of Gas-Phase Nitrogen in Moderately Reddened Lines of Sight?

    Full text link
    We report on the abundance of interstellar neutral nitrogen (NI) for 30 sightlines, using data from the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Hubble Space Telescope (HST). NI column densities are derived by measuring the equivalent widths of several ultraviolet absorption lines and subsequently fitting those to a curve of growth. We find a mean interstellar N/H of 51+/-4 ppm. This is below the mean found by Meyer et al. of 62(+4,-3) ppm (adjusted for a difference in f-values). Our mean N/H is similar, however, to the (f-value adjusted) mean of 51+/-3 ppm found by Knauth et al. for a larger sample of sightlines with larger hydrogen column densities comparable to those in this study. We discuss the question of whether or not nitrogen shows increased gas-phase depletion in lines of sight with column densities log(H_tot) >~ 21, as claimed by Knauth et al. The nitrogen abundance in the line of sight toward HD 152236 is particularly interesting. We derive very small N/H and N/O ratios for this line of sight that may support a previous suggestion that members of the Sco OB1 association formed from an N-deficient region.Comment: Accepted in The Astrophysical Journal, 9/2006 (expected pub. date: 1/2007) 38 pages, 5 figures (4 color

    The Abundance of Interstellar Nitrogen

    Get PDF
    Using the HST Goddard High Resolution Spectrograph (GHRS), we have obtained high S/N echelle observations of the weak interstellar N I 1160, 1161 A absorption doublet toward the stars Gamma Cas, Lambda Ori, Iota Ori, Kappa Ori, Delta Sco, and Kappa Sco. In combination with a previous GHRS measurement of N I toward Zeta Oph, these new observations yield a mean interstellar gas phase nitrogen abundance (per 106^6 H atoms) of 106^6 N/H = 75 +/- 4. There are no statistically significant variations in the measured N abundances from sightline to sightline and no evidence of density-dependent depletion from the gas-phase. Since N is not expected to be depleted much into dust grains in these diffuse sightlines, its gas-phase abundance should reflect the total interstellar abundance. Consequently, the GHRS observations imply that the abundance of interstellar nitrogen (gas plus grains) in the local Milky Way is about 80% of the solar system value of 106^6 N/H = 93 +/- 16. Although this interstellar abundance deficit is somewhat less than that recently found for oxygen and krypton with GHRS, the solar N abundance and the N I oscillator strengths are too uncertain to definitively rule out either a solar ISM N abundance or a 2/3 solar ISM N abundance similar to that of O and Kr.Comment: 14 pages, LaTeX, 2 Postscript figures; ApJ Letters, in pres

    The influence of electron collisions on non-LTE Li line formation in stellar atmospheres

    Full text link
    The influence of the uncertainties in the rate coefficient data for electron-impact excitation and ionization on non-LTE Li line formation in cool stellar atmospheres is investigated. We examine the electron collision data used in previous non-LTE calculations and compare them to recent calculations that use convergent close-coupling (CCC) techniques and to our own calculations using the R-matrix with pseudostates (RMPS) method. We find excellent agreement between rate coefficients from the CCC and RMPS calculations, and reasonable agreement between these data and the semi-empirical data used in non-LTE calculations up to now. The results of non-LTE calculations using the old and new data sets are compared and only small differences found: about 0.01 dex (~ 2%) or less in the abundance corrections. We therefore conclude that the influence on non-LTE calculations of uncertainties in the electron collision data is negligible. Indeed, together with the collision data for the charge exchange process Li(3s) + H Li^+ + H^- now available, and barring the existence of an unknown important collisional process, the collisional data in general is not a source of significant uncertainty in non-LTE Li line formation calculations.Comment: 8 pages, accepted by Astronomy and Astrophysics; Replaced with minor corrections following proof

    High Resolution HST-STIS Spectra of CI and CO in the Beta Pictoris Circumstellar Disk

    Full text link
    High resolution FUV echelle spectra showing absorption features arising from CI and CO gas in the Beta Pictoris circumstellar (CS) disk were obtained on 1997 December 6 and 19 using the Space Telescope Imaging Spectrograph (STIS). An unsaturated spin-forbidden line of CI at 1613.376 A not previously seen in spectra of Beta Pictoris was detected, allowing for an improved determination of the column density of CI at zero velocity relative to the star (the stable component), N = (2-4) x 10^{16} cm^{-2}. Variable components with multiple velocities, which are the signatures of infalling bodies in the Beta Pictoris CS disk, are observed in the CI 1561 A and 1657 A multiplets. Also seen for the first time were two lines arising from the metastable singlet D level of carbon, at 1931 A and 1463 A The results of analysis of the CO A-X (0-0), (1-0), and (2-0) bands are presented, including the bands arising from {13}^CO, with much better precision than has previously been possible, due to the very high resolution provided by the STIS echelle gratings. Only stable CO gas is observed, with a column density N(CO) = (6.3 +/- 0.3) x 10^{14} cm{-2}. An unusual ratio of the column densities of {12}^CO to {13}^CO is found (R = 15 +/- 2). The large difference between the column densities of CI and CO indicates that photodissociation of CO is not the primary source of CI gas in the disk, contrary to previous suggestion.Comment: 13 pages, including 6 figures. LaTex2e (emulateapj5.sty). Accepted for publication in Ap

    The deuterium-to-oxygen ratio in the interstellar medium

    Full text link
    Because the ionization balances for HI, OI, and DI are locked together by charge exchange, D/O is an important tracer for the value of the D/H ratio and for potential spatial variations in the ratio. As the DI and OI column densities are of similar orders of magnitude for a given sight line, comparisons of the two values will generally be less subject to systematic errors than comparisons of DI and HI, which differ by about five orders of magnitude. Moreover, D/O is additionally sensitive to astration, because as stars destroy deuterium, they should produce oxygen. We report here the results of a survey of D/O in the interstellar medium performed with FUSE. We also compare these results with those for D/N. Together with a few results from previous missions, the sample totals 24 lines of sight. The distances range from a few pc to ~2000 pc and log N(DI) from ~13 to ~16 (cm-2). The D/O ratio is constant in the local interstellar medium out to distances of ~150 pc and N(DI) ~ 1x10^15 cm-2, i.e. within the Local Bubble. In this region of the interstellar space, we find D/O = (3.84+/-0.16)x10^-2 (1 sigma in the mean). The homogeneity of the local D/O measurements shows that the spatial variations in the local D/H and O/H must be extremely small, if any. A comparison of the Local Bubble mean value with the few D/O measurements available for low metallicity quasar sight lines shows that the D/O ratio decreases with cosmic evolution, as expected. Beyond the Local Bubble we detected significant spatial variations in the value of D/O. This likely implies a variation in D/H, as O/H is known to not vary significantly over the distances covered in this study. Our dataset suggests a present-epoch deuterium abundance below 1x10^-5, i.e. lower than the value usually assumed, around 1.5x10^-5.Comment: 17 pages, 9 figures, 4 tables, accepted for publication in the Astrophysical Journa

    Examining the Role of Churches in Adolescent Girls\u27 Physical Activity

    Get PDF
    Background: In adults, associations between church attendance and positive health behaviors exist; however, similar evidence among children and youth is lacking. The purposes of this investigation were to examine the associations between physical activity (PA) and church attendance, PA and use of church as a PA facility, and PA and proximity to churches among those who use church as a PA facility (while addressing racial and geographic differences). Methods: High school girls (N=915, age=17.7 ± 0.6 years, 56% African American) completed the 3-Day Physical Activity Recall and surveys including demographics and use of PA facilities. Geographic Information Systems data were used to spatially examine the number of churches within a 0.75-mile street network buffer around girls\u27 homes. Associations were examined using mixed model analyses controlling for demographic factors. Results: For the overall sample, total METs (56 versus 52) and proportion of girls meeting PA guidelines (62% vs. 52%) were significantly higher in church attendees versus nonattendees. Among participants who used facilities, having more churches close to home was associated with more PA. Conclusions: Church attendance and use are correlates of physical activity that should be further explored and addressed in future intervention research with adolescent girls

    The GREAT triggerless total data readout method

    Get PDF
    Recoil decay tagging (RDT) is a very powerful method for the spectroscopy of exotic nuclei. RDT is a delayed coincidence technique between detectors usually at the target position and at the focal plane of a spectrometer. Such measurements are often limited by dead time. This paper describes a novel triggerless data acquisition method, which is being developed for the Gamma Recoil Electron Alpha Tagging (GREAT) spectrometer, that overcomes this limitation by virtually eliminating dead time. Our solution is a total data readout (TDR) method where all channels run independently and are associated in software to reconstruct events. The TDR method allows all the data from both target position and focal plane to be collected with practically no dead-time losses. Each data word is associated with a timestamp generated from a global 100-MHz clock. Events are then reconstructed in real time in the event builder using temporal and spatial associations defined by the physics of the experimen

    Theory and applications of atomic and ionic polarizabilities

    Get PDF
    Atomic polarization phenomena impinge upon a number of areas and processes in physics. The dielectric constant and refractive index of any gas are examples of macroscopic properties that are largely determined by the dipole polarizability. When it comes to microscopic phenomena, the existence of alkaline-earth anions and the recently discovered ability of positrons to bind to many atoms are predominantly due to the polarization interaction. An imperfect knowledge of atomic polarizabilities is presently looming as the largest source of uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available by a variety of techniques. These include refined many-body perturbation theory and coupled-cluster calculations sometimes combined with precise experimental data for selected transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index measurements in microwave cavities, ab initio calculations of atomic structures using explicitly correlated wave functions, interferometry with atom beams, and velocity changes of laser cooled atoms induced by an electric field. This review examines existing theoretical methods of determining atomic and ionic polarizabilities, and discusses their relevance to various applications with particular emphasis on cold-atom physics and the metrology of atomic frequency standards.Comment: Review paper, 44 page

    Macrophage Sub-Populations and the Lipoxin A4 Receptor Implicate Active Inflammation during Equine Tendon Repair

    Get PDF
    Macrophages (Mϕ) orchestrate inflammatory and reparatory processes in injured connective tissues but their role during different phases of tendon healing is not known. We investigated the contribution of different Mϕ subsets in an equine model of naturally occurring tendon injury. Post mortem tissues were harvested from normal (uninjured), sub-acute (3–6 weeks post injury) and chronically injured (>3 months post injury) superficial digital flexor tendons. To determine if inflammation was present in injured tendons, Mϕ sub-populations were quantified based on surface antigen expression of CD172a (pan Mϕ), CD14highCD206low (pro-inflammatory M1Mϕ), and CD206high (anti-inflammatory M2Mϕ) to assess potential polarised phenotypes. In addition, the Lipoxin A4 receptor (FPR2/ALX) was used as marker for resolving inflammation. Normal tendons were negative for both Mϕ and FPR2/ALX. In contrast, M1Mϕ predominated in sub-acute injury, whereas a potential phenotype-switch to M2Mϕ polarity was seen in chronic injury. Furthermore, FPR2/ALX expression by tenocytes was significantly upregulated in sub-acute but not chronic injury. Expression of the FPR2/ALX ligand Annexin A1 was also significantly increased in sub-acute and chronic injuries in contrast to low level expression in normal tendons. The combination of reduced FPR2/ALX expression and persistence of the M2Mϕ phenotype in chronic injury suggests a potential mechanism for incomplete resolution of inflammation after tendon injury. To investigate the effect of pro-inflammatory mediators on lipoxin A4 (LXA4) production and FPR2/ALX expression in vitro, normal tendon explants were stimulated with interleukin-1 beta and prostaglandin E2. Stimulation with either mediator induced LXA4 release and maximal upregulation of FPR2/ALX expression after 72 hours. Taken together, our data suggests that although tenocytes are capable of mounting a protective mechanism to counteract inflammatory stimuli, this appears to be of insufficient duration and magnitude in natural tendon injury, which may potentiate chronic inflammation and fibrotic repair, as indicated by the presence of M2Mϕ
    corecore