906 research outputs found
The influence of electron collisions on non-LTE Li line formation in stellar atmospheres
The influence of the uncertainties in the rate coefficient data for
electron-impact excitation and ionization on non-LTE Li line formation in cool
stellar atmospheres is investigated. We examine the electron collision data
used in previous non-LTE calculations and compare them to recent calculations
that use convergent close-coupling (CCC) techniques and to our own calculations
using the R-matrix with pseudostates (RMPS) method. We find excellent agreement
between rate coefficients from the CCC and RMPS calculations, and reasonable
agreement between these data and the semi-empirical data used in non-LTE
calculations up to now. The results of non-LTE calculations using the old and
new data sets are compared and only small differences found: about 0.01 dex (~
2%) or less in the abundance corrections. We therefore conclude that the
influence on non-LTE calculations of uncertainties in the electron collision
data is negligible. Indeed, together with the collision data for the charge
exchange process Li(3s) + H Li^+ + H^- now available, and barring the
existence of an unknown important collisional process, the collisional data in
general is not a source of significant uncertainty in non-LTE Li line formation
calculations.Comment: 8 pages, accepted by Astronomy and Astrophysics; Replaced with minor
corrections following proof
Genetic polymorphisms linked to susceptibility to malaria
The influence of host genetics on susceptibility to Plasmodium falciparum malaria has been extensively studied over the past twenty years. It is now clear that malaria parasites have imposed strong selective forces on the human genome in endemic regions. Different genes have been identified that are associated with different malaria related phenotypes. Factors that promote severity of malaria include parasitaemia, parasite induced inflammation, anaemia and sequestration of parasitized erythrocytes in brain microvasculature
Mixed configuration-interaction and many-body perturbation theory calculations of energies and oscillator strengths of J=1 odd states of neon
Ab-initio theory is developed for energies of J=1 particle-hole states of
neutral neon and for oscillator strengths of transitions from such states to
the J=0 ground state. Hole energies of low-Z neonlike ions are evaluated.Comment: 5 pages, 1 figure, 4 table
Estrogen deficiency – a central paradigm in age-related impaired healing?
Wound healing is a dynamic biological process achieved through four sequential, overlapping phases; hemostasis, inflammation, tissue proliferation and remodeling. For effective wound healing, all four phases must occur in the appropriate order and time frame. It is well accepted that the wound healing process becomes disrupted in the elderly, increasing the propensity of non-healing wound states that can lead to substantial patient morbidity and an enormous financial burden on healthcare systems. Estrogen deprivation in the elderly has been identified as the key driver of age-related delayed wound healing in both genders, with topical and systemic estrogen replacement reversing the detrimental effects of aging on wound repair. Evidence suggests estrogen deprivation may contribute to the development of chronic wound healing states in the elderly but research in this area is somewhat limited, warranting further investigations. Moreover, although the beneficial effects of estrogen on cutaneous healing have been widely explored, the development of estrogen-based treatments to enhance wound repair in the elderly have yet to be widely exploited. This review explores the critical role of estrogen in reversing age-related impaired healing and evaluates the prospect of developing more focused novel therapeutic strategies that enhance wound repair in the elderly via activation of specific estrogen signaling pathways in regenerating tissues, whilst leaving non-target tissues largely unaffected
CHIANTI - an Atomic Database for Emission Lines. Paper VI: Proton Rates and Other Improvements
The CHIANTI atomic database contains atomic energy levels, wavelengths,
radiative transition probabilities and electron excitation data for a large
number of ions of astrophysical interest. Version 4 has been released, and
proton excitation data is now included, principally for ground configuration
levels that are close in energy. The fitting procedure for excitation data,
both electrons and protons, has been extended to allow 9 point spline fits in
addition to the previous 5 point spline fits. This allows higher quality fits
to data from close-coupling calculations where resonances can lead to
significant structure in the Maxwellian-averaged collision strengths. The
effects of photoexcitation and stimulated emission by a blackbody radiation
field in a spherical geometry on the level balance equations of the CHIANTI
ions can now be studied following modifications to the CHIANTI software. With
the addition of H I, He I and N I, the first neutral species have been added to
CHIANTI. Many updates to existing ion data-sets are described, while several
new ions have been added to the database, including Ar IV, Fe VI and Ni XXI.
The two-photon continuum is now included in the spectral synthesis routines,
and a new code for calculating the relativistic free-free continuum has been
added. The treatment of the free-bound continuum has also been updated.Comment: CHIANTI is available at http://wwwsolar.nrl.navy.mil/chianti.htm
Abundances and Physical Conditions in the Warm Neutral Medium Towards mu Columbae
We present ultraviolet interstellar absorption line measurements for the
sightline towards the O9.5 V star mu Columbae obtained with the Goddard High
Resolution Spectrograph (GHRS) on board the Hubble Space Telescope. These
archival data represent the most complete GHRS interstellar absorption line
measurements for any line of sight towards an early-type star. The 3.5 km/s
resolution of the instrument allow us to accurately derive the gas-phase column
densities of many important ionic species in the diffuse warm neutral medium
using a combination of apparent column density and component fitting
techniques, and we study in detail the contamination from ionized gas along
this sightline. The low-velocity material shows gas-phase abundance patterns
similar to the warm cloud (cloud A) towards the disk star zeta Oph, while the
component at v = +20.1 km/s shows gas-phase abundances similar to those found
in warm halo clouds. We find the velocity-integrated gas-phase abundances of
Zn, P, and S relative to H along this sightline are indistinguishable from
solar system abundances. We discuss the implications of our gas-phase abundance
measurements for the composition of interstellar dust. The relative ionic
column density ratios of the intermediate velocity components show the imprint
both of elemental incorporation into grains and (photo)ionization. The
components at v = -30 and -48 km/s along this sightline likely trace shocked
gas with very low hydrogen column densities. Appendices include a new
derivation of the GHRS instrumental line spread function, and a new very
accurate determination of the total H I column along this sightline. (Abridged)Comment: Accepted for publication in the Astrophysical Journal. 80 pages
including 19 embedded figures and 12 embedded tables. Version with higher
resolution figures can be downloaded from
http://fuse.pha.jhu.edu/~howk/Papers/papers.htm
Glossary of methods and terms used in analytical spectroscopy (IUPAC Recommendations 2019)
Recommendations are given concerning the terminology of concepts and methods used in spectroscopy in analytical chemistry, covering nuclear magnetic resonance spectroscopy, atomic spectroscopy, and vibrational spectroscopy. © 2021 IUPAC and De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/ 2021
Pre-Procedural Atorvastatin Mobilizes Endothelial Progenitor Cells: Clues to the Salutary Effects of Statins on Healing of Stented Human Arteries
OBJECTIVES: Recent clinical trials suggest an LDL-independent superiority of intensive statin therapy in reducing target vessel revascularization and peri-procedural myocardial infarctions in patients who undergo percutaneous coronary interventions (PCI). While animal studies demonstrate that statins mobilize endothelial progenitor cells (EPCs) which can enhance arterial repair and attenuate neointimal formation, the precise explanation for the clinical PCI benefits of high dose statin therapy remain elusive. Thus we serially assessed patients undergoing PCI to test the hypothesis that high dose Atorvastatin therapy initiated prior to PCI mobilizes EPCs that may be capable of enhancing arterial repair. METHODS AND RESULTS: Statin naïve male patients undergoing angiography for stent placement were randomized to standard therapy without Atorvastatin (n = 10) or treatment with Atorvastatin 80 mg (n = 10) beginning three days prior to stent implantation. EPCs were defined by flow cytometry (e.g., surface marker profile of CD45dim/34+/133+/117+). As well, we also enumerated cultured angiogenic cells (CACs) by standard in vitro culture assay. While EPC levels did not fluctuate over time for the patients free of Atorvastatin, there was a 3.5-fold increase in EPC levels with high dose Atorvastatin beginning within 3 days of the first dose (and immediately pre-PCI) which persisted at 4 and 24 hours post-PCI (p<0.05). There was a similar rise in CAC levels as assessed by in vitro culture. CACs cultured in the presence of Atorvastatin failed to show augmented survival or VEGF secretion but displayed a 2-fold increase in adhesion to stent struts (p<0.05). CONCLUSIONS: High dose Atorvastatin therapy pre-PCI improves EPC number and CAC number and function in humans which may in part explain the benefit in clinical outcomes seen in patients undergoing coronary interventions
- …