362 research outputs found

    The effect of 8 or 5 years of denosumab treatment in postmenopausal women with osteoporosis: results from the FREEDOM Extension study

    Get PDF
    The FREEDOM study and its Extension provide long-term information about the effects of denosumab for the treatment of postmenopausal osteoporosis. Treatment for up to 8 years was associated with persistent reduction of bone turnover, continued increases in bone mineral density, low fracture incidence, and a favorable benefit/risk profile. INTRODUCTION: This study aims to report the results through year 5 of the FREEDOM Extension study, representing up to 8 years of continued denosumab treatment in postmenopausal women with osteoporosis. METHODS: Women who completed the 3-year FREEDOM study were eligible to enter the 7-year open-label FREEDOM Extension in which all participants are scheduled to receive denosumab, since placebo assignment was discontinued for ethical reasons. A total of 4550 women enrolled in the Extension (2343 long-term; 2207 cross-over). In this analysis, women in the long-term and cross-over groups received denosumab for up to 8 and 5 years, respectively. RESULTS: Throughout the Extension, sustained reduction of bone turnover markers (BTMs) was observed in both groups. In the long-term group, mean bone mineral density (BMD) continued to increase significantly at each time point measured, for cumulative 8-year gains of 18.4 and 8.3 % at the lumbar spine and total hip, respectively. In the cross-over group, mean BMD increased significantly from the Extension baseline for 5-year cumulative gains of 13.1 and 6.2 % at the lumbar spine and total hip, respectively. The yearly incidence of new vertebral and nonvertebral fractures remained low in both groups. The incidence of adverse and serious adverse events did not increase over time. Through Extension year 5, eight events of osteonecrosis of the jaw and two events of atypical femoral fracture were confirmed. CONCLUSIONS: Denosumab treatment for up to 8 years was associated with persistent reductions of BTMs, continued BMD gains, low fracture incidence, and a consistent safety profile

    The impact of vitamin D status on changes in bone mineral density during treatment with bisphosphonates and after discontinuation following long-term use in post-menopausal osteoporosis

    Get PDF
    BACKGROUND: It is still unclear whether addition of calcium/vitamin D supplements leads to an incremental benefit in patients taking bisphosphonates and whether achievement of serum level of 25 (OH) vitamin D of at least 70 nmol/L has an impact on the skeletal response to bisphosphonates. Moreover the maintenance of BMD after bisphosphonates withdrawal with the continuation of calcium/vitamin D supplements only, remains uncertain. The aims were to assess the impact of vitamin D status on changes in bone mineral density (BMD) in firstly patients with post-menopausal osteoporosis on bisphosphonates and secondly following discontinuation of bisphosphonates after long-term use. METHODS: Two patient groups were recruited. The first study population comprised of 112 women treated with a bisphosphonate. The second study population consisted of 35 women who had been on bisphosphonates for > 5 years in whom the treatment agent was discontinued. Baseline BMD, changes in BMD following treatment, duration of treatment, serum 25 (OH) vitamin D, parathyroid hormone (PTH), urine C-terminal telopeptides of type 1 collagen (CTX) were obtained on the study participants. RESULTS: In the first study group, subjects with serum vitamin D concentrations (> 70 nmol/L) had a significantly lower serum PTH level (mean [SEM] 41 [2] ng/L). PTH concentrations of 41 ng/L or less was associated with a significantly higher increase in BMD at the hip following treatment with bisphosphonates compared to patients with PTH > 41 ng/L (2.5% [0.9] v/s -0.2% [0.9], P = 0.04). In the second study group, discontinuation of bisphosphonate for 15 months after long-term treatment did not result in significant bone loss at the lumbar spine and total hip, although a trend towards gradual decline in BMD at the femoral neck was observed. CONCLUSION: the data suggest that optimal serum 25 (OH) vitamin D concentration may lead to further reduction in bone loss at the hip in patients on bisphosphonates. A prospective controlled trial is needed to evaluate whether the response to bisphosphonates is influenced by vitamin D status. BMD is preserved at the lumbar spine and total hip following discontinuation of bisphosphonate for a short period following long-term treatment, although a gradual loss occurs at the femoral neck

    Evolution of bisphosphonate-related osteonecrosis of the jaw in patients with multiple myeloma and Waldenstrom's macroglobulinemia: a retrospective multicentric study

    Get PDF
    Bisphosphonates (BPs) are used intravenously to treat cancer-related conditions for the prevention of pathological fractures. Osteonecrosis of the jaw (BRONJ) is a rare complication reported in 4–15% of patients. We studied, retrospectively, 55 patients with multiple myeloma or Waldenstrom's macroglobulinemia followed up from different haematological departments who developed BRONJ. All patients were treated with BPs for bone lesions and/or fractures. The most common trigger for BRONJ was dental alveolar surgery. After a median observation of 26 months, no death caused by BRONJ complication was reported. In all, 51 patients were treated with antibiotic therapy, and in 6 patients, this was performed in association with surgical debridement of necrotic bone, in 16 with hyperbaric O2 therapy/ozonotherapy and curettage and in 12 with sequestrectomy and O2/hyperbaric therapy. Complete response was observed in 20 cases, partial response in 21, unchanged in 9 and worsening in 3. The association of surgical treatment with antibiotic therapy seems to be more effective in eradicating the necrotic bone than antibiotic treatment alone. O2 hyperbaric/ozonotherapy is a very effective treatment. The cumulative dosage of BPs is important for the evolution of BRONJ. Because the most common trigger for BRONJ was dental extractions, all patients, before BP treatment, must achieve an optimal periodontal health

    Maintenance of antifracture efficacy over 10 years with strontium ranelate in postmenopausal osteoporosis

    Get PDF
    In an open-label extension study, BMD increased continuously with strontium ranelate over 10 years in osteoporotic women (P < 0.01). Vertebral and nonvertebral fracture incidence was lower between 5 and 10 years than in a matched placebo group over 5 years (P < 0.05). Strontium ranelate's antifracture efficacy appears to be maintained long term. INTRODUCTION: Strontium ranelate has proven efficacy against vertebral and nonvertebral fractures, including hip, over 5 years in postmenopausal osteoporosis. We explored long-term efficacy and safety of strontium ranelate over 10 years. METHODS: Postmenopausal osteoporotic women participating in the double-blind, placebo-controlled phase 3 studies SOTI and TROPOS to 5 years were invited to enter a 5-year open-label extension, during which they received strontium ranelate 2 g/day (n = 237, 10-year population). Bone mineral density (BMD) and fracture incidence were recorded, and FRAX(R) scores were calculated. The effect of strontium ranelate on fracture incidence was evaluated by comparison with a FRAX(R)-matched placebo group identified in the TROPOS placebo arm. RESULTS: The patients in the 10-year population had baseline characteristics comparable to those of the total SOTI/TROPOS population. Over 10 years, lumbar BMD increased continuously and significantly (P < 0.01 versus previous year) with 34.5 +/- 20.2% relative change from baseline to 10 years. The incidence of vertebral and nonvertebral fracture with strontium ranelate in the 10-year population in years 6 to 10 was comparable to the incidence between years 0 and 5, but was significantly lower than the incidence observed in the FRAX(R)-matched placebo group over 5 years (P < 0.05); relative risk reductions for vertebral and nonvertebral fractures were 35% and 38%, respectively. Strontium ranelate was safe and well tolerated over 10 years. CONCLUSIONS: Long-term treatment with strontium ranelate is associated with sustained increases in BMD over 10 years, with a good safety profile. Our results also support the maintenance of antifracture efficacy over 10 years with strontium ranelate

    The impact of bisphosphonates on the osteoblast proliferation and Collagen gene expression in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bisphosphonates are widely used in the clinical treatment of bone diseases with increased bone resorption. In terms of side effects, they are known to be associated with osteonecrosis of the jaw (BONJ).</p> <p>The objective of this study was to evaluate the effect of bisphosphonates on osteoblast proliferation by cell count and gene expression analysis of cyclin D1 <it>in vitro</it>. Furthermore, the gene expression of the extracellular matrix protein collagen type I was evaluated. Nitrogen-containing and non-nitrogen-containing bisphosphonates have been compared on gene expression levels.</p> <p>Methods</p> <p>Human osteoblast obtained from hip bone were stimulated with zoledronate, ibandronate and clodronate at concentrations of 5 × 10<sup>-5</sup>M over the experimental periods of 1, 2, 5, 10 and 14 days. At each point in time, the cells were dissolved, the mRNA extracted, and the gene expression level of cyclin D1 and collagen type I were quantified by Real-Time RT-PCR. The gene expression was compared to an unstimulated osteoblast cell culture for control.</p> <p>Results</p> <p>The proliferation appeared to have been influenced only to a small degree by bisphosphonates. Zolendronate led to a lower cyclin D1 gene expression after 10 days. The collagen gene expression was enhanced by nitrogen containing bisphosphonates, decreased however after day 10. The non-nitrogen-containing bisphosphonate clodronate, however, did not significantly influence cyclin D1 and collagen gene expression.</p> <p>Conclusions</p> <p>The above data suggest a limited influence of bisphosphonates on osteoblast proliferation, except for zoledronate. The extracellular matrix production seems to be initially advanced and inhibited after 10 days. Interestingly, clodronate has little influence on osteoblast proliferation and extracellular matrix production in terms of cyclin D1 and collagen gene expression.</p

    Current and emerging treatment of osteoporosis

    Get PDF
    The goal of treating a patient with recent fragility fracture should not only be to treat the patient in the acute phase but also to prevent further fractures. Interventions to increase bone mass to preventing further fragility fractures can be classified as non-pharmacological and pharmacological. All European and international guidelines base the need for treatment, not on the diagnosis of osteoporosis (based on the T-score), but on the risk of fracture, which is strongly influenced by the presence of a fragility fracture, especially vertebral or femoral fractures. Before treatment, it is important to make a differential diagnosis between primary and secondary osteoporosis because anti-osteoporotic drug treatment would be useless if the primary illness causing osteoporosis is not treated too. Some studies show that anti-osteoporotic drugs are frequently interrupted within 1 month of their prescription; this happens not so much due to the occurrence of adverse events but mostly because patients have not been sufficiently informed about the importance of taking the drug and because are not receiving personalised treatment. All data confirm that, in older people, vitamin D deficiency is highly prevalent and calcium intake is often not adequate. So, osteoporosis guidelines recommend calcium and vitamin D for all patients in association with antiosteoporotic therapy. We have many drugs for the treatment of patients at high risk of fracture, but we should use drugs based on evidence of their efficacy and safety in older-age subgroups, provided by targeted studies or extrapolated data. In this chapter, we describe efficacy, route of administration, adverse events and recent technical remarks of current antiresorptive and anabolic osteoporosis therapies. Furthermore, we describe emerging therapies, such as Abaloparatide and Romosozumab
    corecore