431 research outputs found

    Selection and transfer of an IncI1-tet(A) plasmid of Escherichia coli in an ex vivo model of the porcine caecum at doxycycline concentrations caused by cross-contaminated feed

    Get PDF
    Aims: The aim of this study was to investigate the effect of subtherapeutic intestinal doxycycline (DOX) concentrations (4 and 1mgl(-1)), caused by cross-contamination of feed, on the enrichment of a DOX-resistant commensal Escherichia coli and its resistance plasmid in an exvivo model of the porcine caecum. Methods and Results: A DOX-resistant, tet(A)-carrying, porcine commensal E.coli strain (EC 682) was cultivated for 6days in the porcine caecum model under different conditions (0, 1 and 4mgl(-1) DOX). EC 682, other coliforms and anaerobic bacteria were enumerated daily. A selection of isolated DOX-resistant coliforms (n=454) was characterized by rep-PCR clustering, PCR assays (Inc1 and tet(A)) and micro broth dilution susceptibility tests (Sensititre). Both 1 and 4mgl(-1) DOX-enriched medium had a significantly higher selective effect on EC 682 and other resistant coliforms than medium without DOX. Transconjugants of EC 682 were isolated more frequently in the presence of 1 and 4mgl(-1) DOX compared to medium without DOX. Conclusions: Subtherapeutic intestinal DOX concentrations have the potential to select for DOX-resistant E.coli, and promote the selection of transconjugants in a porcine caecum model. Significance and Impact of the Study: Cross-contamination of feed with antimicrobials such as DOX likely promotes the spread of antimicrobial resistance. Therefore, it is important to develop or fine-tune guidelines for the safe use of antimicrobials in animal feed and its storage

    Introduction of HIV-2 and multiple HIV-1 subtypes to Lebanon.

    Get PDF
    HIV genetic variability, phylogenetic relationships, and transmission dynamics were analyzed in 26 HIV-infected patients from Lebanon. Twenty-five specimens were identified as HIV-1 and one as HIV-2 subtype B. The 25 strains were classified into six env-C2-V3 HIV-1 subtypes: B (n = 10), A (n = 11), C (n = 1), D (n = 1), G (n = 1), and unclassifiable. Potential recombinants combining parts of viral regions from different subtypes Aenv/Dpol/Agag, Genv/Apol, and the unclassifiable-subtype(env)/unclassifiable-subtype(pol)/Agag were found in three patients. Epidemiologic analysis of travel histories and behavioral risks indicated that HIV-1 and HIV-2 subtypes reflected HIV strains prevalent in countries visited by patients or their sex partners. Spread of complex HIV-subtype distribution patterns to regions where HIV is not endemic may be more common than previously thought. Blood screening for both HIV-1 and HIV-2 in Lebanon is recommended to protect the blood supply. HIV subtype data provide information for vaccine development

    Emended descriptions of Bacillus sporothermodurans and Bacillus oleronius with the inclusion of dairy farm isolates of both species

    Get PDF
    Bacillus sporothermodurans is an industrially important micro-organism because of its ability to produce endospores which resist ultra high temperature (UHT) and industrial sterilization processes. It was described by Pettersson et al. (1996) based on seven genetically homogeneous isolates all from UHT-milk. Bacillus oleronius, the closest phylogenetic neighbor of B. sporothermodurans, was described by Kuhnigk et al. (1995), based on a single strain, isolated from the hindgut of the termite Reticulitermes santonensis. A polyphasic study of a heterogeneous collection of B. sporothermodurans and B. oleronius strains isolated from various sources and geographic origins led to an emended description of both species. Additional data presented are the results of fatty acids, quinones and/or cell wall analysis (polar lipids). DNA-DNA hybridizations confirmed 3 subgroups of strains obtained after SDS-PAGE analysis of cellular proteins as B. sporothermodurans. One named B. sporothermodurans strain (R-7489) was reclassified as a Bacillus fordii strain. The phenotypic profiles of both species were rather heterogeneous, sometimes different from the original descriptions and did not differ in a large number of characters, although B. oleronius generally gave stronger reactions in its positive tests than did B. sporothermodurans; the variable and weak reactions for both organisms with some substrates blurred the distinction between both. However, differences in polar lipid, SDS-PAGE and menaquinone profiles clearly allow distinction between the two species

    Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy.

    Get PDF
    The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 μatm, minimum Ω(arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 μatm, minimum Ω(arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 μatm, minimum Ω(arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments
    • …
    corecore