189 research outputs found

    T cell receptor engineering targeting FOXM1 for the treatment of lung cancer

    Get PDF
    https://openworks.mdanderson.org/sumexp23/1069/thumbnail.jp

    ANtiangiogenic Second-line Lung cancer Meta-Analysis on individual patient data in non-small cell lung cancer:ANSELMA

    Get PDF
    BACKGROUND: Now that immunotherapy plus chemotherapy (CT) is one standard option in first-line treatment of advanced non-small cell lung cancer (NSCLC), there exists a medical need to assess the efficacy of second-line treatments (2LT) with antiangiogenics (AA). We performed an individual patient data meta-analysis to validate the efficacy of these combinations as 2LT. METHODS: Randomised trials of AA plus standard 2LT compared to 2LT alone that ended accrual before 2015 were eligible. Fixed-effect models were used to compute pooled hazard ratios (HRs) for overall survival (OS, main end-point), progression-free survival (PFS) and subgroup analyses. RESULTS: Sixteen trials were available (8,629 patients, 64% adenocarcinoma). AA significantly prolonged OS (HR = 0.93 [95% confidence interval {CI}: 0.89; 0.98], p = 0.005) and PFS (0.80 [0.77; 0.84], p < 0.0001) compared with 2LT alone. Absolute 1-year OS and PFS benefit for AA were +1.8% [-0.4; +4.0] and +3.5% [+1.9; +5.1], respectively. The OS benefit of AA was higher in younger patients (HR = 0.87 [95% CI: 0.76; 1.00], 0.89 [0.81; 0.97], 0.94 [0.87; 1.02] and 1,04 [0.93; 1.17] for patients <50, 50-59, 60-69 and ≥ 70 years old, respectively; trend test: p = 0.02) and in patients who started AA within 9 months after starting the first-line therapy (0.88 [0.82; 0.99]) than in patients who started AA later (0.99 [0.91; 1.08]) (interaction: p = 0.03). Results were similar for PFS. AA increased the risk of hypertension (p < 0.0001), but not the risk of pulmonary thromboembolic events (p = 0.21). CONCLUSIONS: In the 2LT of advanced NSCLC, adding AA significantly prolongs OS and PFS, but the benefit is clinically limited, mainly observed in younger patients and after shorter time since the start of first-line therapy

    The SUMO E3-ligase PIAS1 Regulates the Tumor Suppressor PML and Its Oncogenic Counterpart PML-RARA

    Full text link
    The ubiquitin-like SUMO proteins covalently modify protein substrates and regulate their functional properties. In a broad spectrum of cancers, the tumor suppressor PML undergoes ubiquitin-mediated degradation primed by CK2 phosphorylation. Here we report that the SUMO E3-ligase inhibitor PIAS1 regulates oncogenic signaling through its ability to sumoylate PML and the PML-RARA oncoprotein of acute promyelocytic leukemia (APL). PIAS1-mediated SUMOylation of PML promoted CK2 interaction and ubiquitin/proteasome-mediated degradation of PML, attenuating its tumor suppressor functions. In addition, PIAS1-mediated SUMOylation of PML-RARA was essential for induction of its degradation by arsenic trioxide, an effective APL treatment. Moreover, PIAS1 suppression abrogated the ability of arsenic trioxide to trigger apoptosis in APL cells. Lastly, PIAS1 was also essential for PML degradation in non-small cell lung cancer cells, and PML and PIAS1 were inversely correlated in NSCLC cell lines and primary specimens. Together, our findings reveal novel roles for PIAS1 and the SUMOylation machinery in regulating oncogenic networks and the response to leukemia therapy

    A pan-cancer proteomic perspective on The Cancer Genome Atlas.

    Get PDF
    Protein levels and function are poorly predicted by genomic and transcriptomic analysis of patient tumours. Therefore, direct study of the functional proteome has the potential to provide a wealth of information that complements and extends genomic, epigenomic and transcriptomic analysis in The Cancer Genome Atlas (TCGA) projects. Here we use reverse-phase protein arrays to analyse 3,467 patient samples from 11 TCGA 'Pan-Cancer' diseases, using 181 high-quality antibodies that target 128 total proteins and 53 post-translationally modified proteins. The resultant proteomic data are integrated with genomic and transcriptomic analyses of the same samples to identify commonalities, differences, emergent pathways and network biology within and across tumour lineages. In addition, tissue-specific signals are reduced computationally to enhance biomarker and target discovery spanning multiple tumour lineages. This integrative analysis, with an emphasis on pathways and potentially actionable proteins, provides a framework for determining the prognostic, predictive and therapeutic relevance of the functional proteome

    Taxane-Platin-Resistant Lung Cancers Co-develop Hypersensitivity to JumonjiC Demethylase Inhibitors

    Get PDF
    Although non-small cell lung cancer (NSCLC) patients benefit from standard taxane-platin chemotherapy, many relapse, developing drug resistance. We established preclinical taxane-platin-chemoresistance models and identified a 35-gene resistance signature, which was associated with poor recurrence-free survival in neoadjuvant-treated NSCLC patients and included upregulation of the JumonjiC lysine demethylase KDM3B. In fact, multi-drug-resistant cells progressively increased the expression of many JumonjiC demethylases, had altered histone methylation, and, importantly, showed hypersensitivity to JumonjiC inhibitors in vitro and in vivo. Increasing taxane-platin resistance in progressive cell line series was accompanied by progressive sensitization to JIB-04 and GSK-J4. These JumonjiC inhibitors partly reversed deregulated transcriptional programs, prevented the emergence of drug-tolerant colonies from chemo-naive cells, and synergized with standard chemotherapy in vitro and in vivo. Our findings reveal JumonjiC inhibitors as promising therapies for targeting taxane-platin-chemoresistant NSCLCs.Fil: Dalvi, Maithili P.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Wang, Lei. University of Texas. Southwestern Medical Center; Estados UnidosFil: Zhong, Rui. University of Texas. Southwestern Medical Center; Estados UnidosFil: Kollipara, Rahul K.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Park, Hyunsil. University of Texas. Southwestern Medical Center; Estados UnidosFil: Bayo Fina, Juan Miguel. University of Texas. Southwestern Medical Center; Estados Unidos. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Yenerall, Paul. University of Texas. Southwestern Medical Center; Estados UnidosFil: Zhou, Yunyun. University of Texas. Southwestern Medical Center; Estados UnidosFil: Timmons, Brenda C.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Rodriguez Canales, Jaime. University of Texas; Estados UnidosFil: Behrens, Carmen. Md Anderson Cancer Center; Estados UnidosFil: Mino, Barbara. University of Texas; Estados UnidosFil: Villalobos, Pamela. University of Texas; Estados UnidosFil: Parra, Edwin R.. University of Texas; Estados UnidosFil: Suraokar, Milind. University of Texas; Estados UnidosFil: Pataer, Apar. University of Texas; Estados UnidosFil: Swisher, Stephen G.. University of Texas; Estados UnidosFil: Kalhor, Neda. University of Texas; Estados UnidosFil: Bhanu, Natarajan V.. University of Pennsylvania; Estados UnidosFil: Garcia, Benjamin A.. University of Pennsylvania; Estados UnidosFil: Heymach, John V.. University of Texas; Estados UnidosFil: Coombes, Kevin. University of Texas; Estados UnidosFil: Xie, Yang. University of Texas. Southwestern Medical Center; Estados UnidosFil: Girard, Luc. University of Texas. Southwestern Medical Center; Estados UnidosFil: Gazdar, Adi F.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Kittler, Ralf. University of Texas. Southwestern Medical Center; Estados UnidosFil: Wistuba, Ignacio I.. University of Texas; Estados UnidosFil: Minna, John D.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Martinez, Elisabeth D.. University of Texas. Southwestern Medical Center; Estados Unido

    AXL targeting restores PD-1 blockade sensitivity of STK11/LKB1 mutant NSCLC through expansion of TCF1+ CD8 T cells

    Get PDF
    Mutations in STK11/LKB1 in non-small cell lung cancer (NSCLC) are associated with poor patient responses to immune checkpoint blockade (ICB), and introduction of a Stk11/Lkb1 (L) mutation into murine lung adenocarcinomas driven by mutant Kras and Trp53 loss (KP) resulted in an ICB refractory syngeneic KPL tumor. Mechanistically this occurred because KPL mutant NSCLCs lacked TCF1-expressing CD8 T cells, a phenotype recapitulated in human STK11/LKB1 mutant NSCLCs. Systemic inhibition of Axl results in increased type I interferon secretion from dendritic cells that expanded tumor-associated TCF1+PD-1+CD8 T cells, restoring therapeutic response to PD-1 ICB in KPL tumors. This was observed in syngeneic immunocompetent mouse models and in humanized mice bearing STK11/LKB1 mutant NSCLC human tumor xenografts. NSCLC-affected individuals with identified STK11/LKB1 mutations receiving bemcentinib and pembrolizumab demonstrated objective clinical response to combination therapy. We conclude that AXL is a critical targetable driver of immune suppression in STK11/LKB1 mutant NSCLC.publishedVersio
    • …
    corecore