215 research outputs found

    Modulation of ligand-heme reactivity by binding pocket residues demonstrated in cytochrome c' over the femtosecond-second temporal range

    Get PDF
    The ability of hemoproteins to discriminate between diatomic molecules, and the subsequent affinity for their chosen ligand, is fundamental to the existence of life. These processes are often controlled by precise structural arrangements in proteins, with heme pocket residues driving reactivity and specificity. One such protein is cytochrome c', which has the ability to bind nitric oxide (NO) and carbon monoxide (CO) on opposite faces of the heme, a property that is shared with soluble guanylate cycle. Like soluble guanylate cyclase, cytochrome c' also excludes O completely from the binding pocket. Previous studies have shown that the NO binding mechanism is regulated by a proximal arginine residue (R124) and a distal leucine residue (L16). Here, we have investigated the roles of these residues in maintaining the affinity for NO in the heme binding environment by using various time-resolved spectroscopy techniques that span the entire femtosecond-second temporal range in the UV-vis spectrum, and the femtosecond-nanosecond range by IR spectroscopy. Our findings indicate that the tightly regulated NO rebinding events following excitation in wild-type cytochrome c' are affected in the R124A variant. In the R124A variant, vibrational and electronic changes extend continuously across all time scales (from fs-s), in contrast to wild-type cytochrome c' and the L16A variant. Based on these findings, we propose a NO (re)binding mechanism for the R124A variant of cytochrome c' that is distinct from that in wild-type cytochrome c'. In the wider context, these findings emphasize the importance of heme pocket architecture in maintaining the reactivity of hemoproteins towards their chosen ligand, and demonstrate the power of spectroscopic probes spanning a wide temporal range. © 2013 FEBS.

    Photochemical Spin Dynamics of the Vitamin B12 Derivative, Methylcobalamin

    Get PDF
    Derivatives of vitamin B12 are six-coordinate cobalt corrinoids found in humans, other animals and micro-organisms. By acting as enzymatic cofactors and photoreceptor chromophores they serve vital metabolic and photoprotective functions. Depending on the context, the chemical mechanisms of the biologically-active derivatives of B12 – methylcobalamin (MeCbl) and 5’-deoxyadenosylcobalamin (AdoCbl) – can be very different from one another. The extent to which this chemistry is tuned by the upper axial ligand, however, is not yet clear. Here, we have used a combination of time-resolved FT-EPR, magnetic field effect experiments and spin dynamic simulations to reveal that the upper axial ligand alone only results in relatively minor changes to the photochemical spin dynamics of B12. By studying the photolysis of MeCbl, we find that, much like for AdoCbl, the initial (or ‘geminate’) radical pairs are born predominantly in the singlet spin-state and thus originate from singlet excited-state precursors. This is in contrast to the triplet radical pairs and precursors proposed previously. Unlike AdoCbl, the extent of geminate recombination is limited following MeCbl photolysis, resulting in significant distortions to the FT-EPR signal caused by polarization from spin-correlated methyl-methyl radical ‘f-pairs’ formed following rapid diffusion. Despite the photophysical mechanism that precedes photolysis of MeCbl showing a wavelength-dependence, the subsequent spin dynamics appear to be largely independent of excitation wavelength, again much like for AdoCbl. Our data finally provide clarity to what in the literature to date has been a confused and contradictory picture. We conclude that, although the upper axial position of MeCbl and AdoCbl does impact their reactivity to some extent, the remarkable biochemical diversity of these fascinating molecules is most likely a result of tuning by their protein environment

    Critical Error Frequency and the Impact of Training with Inhalers Commonly used for Maintenance Treatment in Chronic Obstructive Pulmonary Disease

    Get PDF
    Introduction: Training in correct inhaler use, ideally in person or by video demonstration, can minimize errors but is rarely provided in clinics. This open-label, low-intervention study evaluated critical error rates with dry-powder inhalers (DPIs), before and after training, in patients with chronic obstructive pulmonary disease. Methods: Patients prescribed an inhaled corticosteroid (ICS)/long-acting β2-agonist (LABA) (ELLIPTA, Turbuhaler, or DISKUS), long-acting muscarinic antagonist (LAMA)/LABA (ELLIPTA or Breezhaler), or LAMA-only DPI (ELLIPTA, HandiHaler, or Breezhaler) were enrolled. Critical errors were assessed before training (Visit 1 [V1]; primary endpoint) and 6 weeks thereafter (Visit 2 [V2]; secondary endpoint). Logistic regression models were used to calculate odds ratios (ORs) for between-group comparisons. Results: The intent-to-treat population comprised 450 patients. At V1, fewer patients made ≥ 1 critical error with ELLIPTA (10%) versus other ICS/LABA DPIs (Turbuhaler: 40%, OR 4.66, P=0.005; DISKUS: 26%, OR 2.48, P=0.114) and other LAMA or LAMA/LABA DPIs (HandiHaler: 34%, OR 3.50, P=0.026; Breezhaler: 33%, OR 3.94, P=0.012). Critical error rates with the primary ICS/LABA DPI were not significantly different between ELLIPTA ICS/LABA (10%) and ICS/LABA plus LAMA groups (12– 25%). Critical errors with the primary ICS/LABA DPI occurred less frequently with ELLIPTA ICS/LABA with or without LAMA (11%) versus Turbuhaler ICS/LABA with or without LAMA (39%, OR 3.99, P< 0.001) and DISKUS ICS/LABA with or without LAMA (26%, OR 2.18, P=0.069). Simulating single-inhaler versus multiple-inhaler triple therapy, critical error rates were lower with ELLIPTA fluticasone furoate/vilanterol (FF/VI; 10%) versus ELLIPTA FF/VI plus LAMA (22%), considering errors with either DPI (OR 2.50, P=0.108). At V2, critical error rates decreased for all DPIs/groups, reaching zero only for ELLIPTA. Between-group comparisons were similar to V1. Conclusion: Fewer patients made critical errors with ELLIPTA versus other ICS/LABA, and LAMA or LAMA/LABA DPIs. The effect of “verbal” training highlights its importance for reducing critical errors with common DPIs

    Direct Evidence of an Excited-State Triplet Species upon Photoactivation of the Chlorophyll Precursor Protochlorophyllide

    Get PDF
    The chlorophyll precursor protochlorophyllide (Pchlide), which is the substrate for the light-driven enzyme protochlorophyllide oxidoreductase, has unique excited-state properties that facilitate photocatalysis. Previous time-resolved spectroscopy measurements have implied that a long-lived triplet state is formed during the excited-state relaxation of Pchlide, although direct evidence of its existence is still lacking. Here we use time-resolved electron paramagnetic resonance (EPR) in combination with time-resolved absorption measurements at a range of temperatures (10–290 K), solvents, and oxygen concentrations to provide a detailed characterization of the triplet state of Pchlide. The triplet decays in a biphasic, oxygen-dependent manner, while the first reported EPR signature of a Pchlide triplet displays both emissive and absorptive features and an antisymmetric spectrum similar to other porphyrin triplet states. This work demonstrates that the Pchlide triplet is accessible to various cryogenic spectroscopic probes over a range of time scales and paves the way for understanding its potential role in catalysis

    Unexpected Roles of a Tether Harboring a Tyrosine Gatekeeper Residue in Modular Nitrite Reductase Catalysis

    Get PDF
    © 2019 American Chemical Society. It is generally assumed that tethering enhances rates of electron harvesting and delivery to active sites in multidomain enzymes by proximity and sampling mechanisms. Here, we explore this idea in a tethered 3-domain, trimeric copper-containing nitrite reductase. By reverse engineering, we find that tethering does not enhance the rate of electron delivery from its pendant cytochrome c to the catalytic copper-containing core. Using a linker that harbors a gatekeeper tyrosine in a nitrite access channel, the tethered haem domain enables catalysis by other mechanisms. Tethering communicates the redox state of the haem to the distant T2Cu center that helps initiate substrate binding for catalysis. It also tunes copper reduction potentials, suppresses reductive enzyme inactivation, enhances enzyme affinity for substrate, and promotes intercopper electron transfer. Tethering has multiple unanticipated beneficial roles, the combination of which fine-tunes function beyond simplistic mechanisms expected from proximity and restrictive sampling models

    Social Transmission of Avoidance Behavior under Situational Change in Learned and Unlearned Rats

    Get PDF
    BACKGROUND: Rats receive information from other conspecifics by observation or other types of social interaction. Such social interaction may contribute to the effective adaptation to changes of environment such as situational switching. Learning to avoid dangerous places or objects rapidly occurs with even a single conditioning session, and the conditioned memory tends to be sustained over long periods. The avoidance is important for adaptation, but the details of the conditions under which the social transmission of avoidance is formed are unknown. We demonstrate that the previous experience of avoidance learning is important for the formation of behaviors for social transmission of avoidance and that the experienced rats adapt to a change of situation determined by the presence or absence of aversive stimuli. We systematically investigated social influence on avoidance behavior using a passive avoidance test in a light/dark two-compartment apparatus. METHODOLOGY/PRINCIPAL FINDINGS: Rats were divided into two groups, one receiving foot shocks and another with no aversive experience in a dark compartment. Experienced and inexperienced rats were further divided into subjects and partners. In Experiment 1, each subject experienced (1) interaction with an experienced partner, (2) interaction with an inexperienced partner, or (3) no interaction. In Experiment 2, each subject experienced interaction with a partner that received a shock. The entering latency to a light compartment was measured. The avoidance behavior of experienced rats was inhibited by interaction with inexperienced or experienced partners in a safely-changed situation. The avoidance of experienced rats was reinstated in a dangerously-changed situation by interaction with shocked rats. In contrast, the inexperienced rats were not affected by any social circumstances. CONCLUSIONS/SIGNIFICANCE: These results suggest that transmitted information among rats can be updated under a situational change and that the previous experience is crucial for social enhancement and inhibition of avoidance behavior in rats

    Evidence for a Two-Metal-Ion Mechanism in the Cytidyltransferase KdsB, an Enzyme Involved in Lipopolysaccharide Biosynthesis

    Get PDF
    Lipopolysaccharide (LPS) is located on the surface of Gram-negative bacteria and is responsible for maintaining outer membrane stability, which is a prerequisite for cell survival. Furthermore, it represents an important barrier against hostile environmental factors such as antimicrobial peptides and the complement cascade during Gram-negative infections. The sugar 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) is an integral part of LPS and plays a key role in LPS functionality. Prior to its incorporation into the LPS molecule, Kdo has to be activated by the CMP-Kdo synthetase (CKS). Based on the presence of a single Mg2+ ion in the active site, detailed models of the reaction mechanism of CKS have been developed previously. Recently, a two-metal-ion hypothesis suggested the involvement of two Mg2+ ions in Kdo activation. To further investigate the mechanistic aspects of Kdo activation, we kinetically characterized the CKS from the hyperthermophilic organism Aquifex aeolicus. In addition, we determined the crystal structure of this enzyme at a resolution of 2.10 Å and provide evidence that two Mg2+ ions are part of the active site of the enzyme

    Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system

    Get PDF
    DNA-based gene therapy has considerable therapeutic potential, but the challenges associated with delivery continue to limit progress. Messenger RNA (mRNA) has the potential to provide for transient production of therapeutic proteins, without the need for nuclear delivery and without the risk of insertional mutagenesis. Here we describe the sustained delivery of therapeutic proteins in vivo in both rodents and non-human primates via nanoparticle-formulated mRNA. Nanoparticles formulated with lipids and lipid-like materials were developed for delivery of two separate mRNA transcripts encoding either human erythropoietin (hEPO) or factor IX (hFIX) protein. Dose-dependent protein production was observed for each mRNA construct. Upon delivery of hEPO mRNA in mice, serum EPO protein levels reached several orders of magnitude (>125 000-fold) over normal physiological values. Further, an increase in hematocrit (Hct) was established, demonstrating that the exogenous mRNA-derived protein maintained normal activity. The capacity of producing EPO in non-human primates via delivery of formulated mRNA was also demonstrated as elevated EPO protein levels were observed over a 72-h time course. Exemplifying the possible broad utility of mRNA drugs, therapeutically relevant amounts of human FIX (hFIX) protein were achieved upon a single intravenous dose of hFIX mRNA-loaded lipid nanoparticles in mice. In addition, therapeutic value was established within a hemophilia B (FIX knockout (KO)) mouse model by demonstrating a marked reduction in Hct loss following injury (incision) to FIX KO mice

    Quantum biology: an update and perspective

    Get PDF
    This is the final version. Available from MDPI via the DOI in this record. Data Availability Statement: Not applicable.Understanding the rules of life is one of the most important scientific endeavours and has revolutionised both biology and biotechnology. Remarkable advances in observation tech-niques allow us to investigate a broad range of complex and dynamic biological processes in which living systems could exploit quantum behaviour to enhance and regulate biological functions. Recent evidence suggests that these non-trivial quantum mechanical effects may play a crucial role in maintaining the non-equilibrium state of biomolecular systems. Quantum biology is the study of such quantum aspects of living systems. In this review, we summarise the latest progress in quantum biology, including the areas of enzyme-catalysed reactions, photosynthesis, spin-dependent reactions, DNA, fluorescent proteins, and ion channels. Many of these results are expected to be fundamental building blocks towards understanding the rules of life.Leverhulme Trus

    Harnessing learning biases is essential for applying social learning in conservation

    Get PDF
    Social learning can influence how animals respond to anthropogenic changes in the environment, determining whether animals survive novel threats and exploit novel resources or produce maladaptive behaviour and contribute to human-wildlife conflict. Predicting where social learning will occur and manipulating its use are, therefore, important in conservation, but doing so is not straightforward. Learning is an inherently biased process that has been shaped by natural selection to prioritize important information and facilitate its efficient uptake. In this regard, social learning is no different from other learning processes because it too is shaped by perceptual filters, attentional biases and learning constraints that can differ between habitats, species, individuals and contexts. The biases that constrain social learning are not understood well enough to accurately predict whether or not social learning will occur in many situations, which limits the effective use of social learning in conservation practice. Nevertheless, we argue that by tapping into the biases that guide the social transmission of information, the conservation applications of social learning could be improved. We explore the conservation areas where social learning is highly relevant and link them to biases in the cues and contexts that shape social information use. The resulting synthesis highlights many promising areas for collaboration between the fields and stresses the importance of systematic reviews of the evidence surrounding social learning practices.BBSRC David Phillips Fellowship (BB/H021817/1
    corecore