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ABSTRACT: Derivatives of vitamin B12 are six-coordinate cobalt corrinoids found in humans, other animals and micro-organisms. 

By acting as enzymatic cofactors and photoreceptor chromophores they serve vital metabolic and photoprotective functions. Depend-

ing on the context, the chemical mechanisms of the biologically-active derivatives of B12 – methylcobalamin (MeCbl) and 5’-deoxy-

adenosylcobalamin (AdoCbl) – can be very different from one another. The extent to which this chemistry is tuned by the upper axial 

ligand, however, is not yet clear. Here, we have used a combination of time-resolved FT-EPR, magnetic field effect experiments and 

spin dynamic simulations to reveal that the upper axial ligand alone only results in relatively minor changes to the photochemical 

spin dynamics of B12. By studying the photolysis of MeCbl, we find that, much like for AdoCbl, the initial (or ‘geminate’) radical 

pairs are born predominantly in the singlet spin-state and thus originate from singlet excited-state precursors. This is in contrast to 

the triplet radical pairs and precursors proposed previously. Unlike AdoCbl, the extent of geminate recombination is limited following 

MeCbl photolysis, resulting in significant distortions to the FT-EPR signal caused by polarization from spin-correlated methyl-methyl 

radical ‘f-pairs’ formed following rapid diffusion. Despite the photophysical mechanism that precedes photolysis of MeCbl showing 

a wavelength-dependence, the subsequent spin dynamics appear to be largely independent of excitation wavelength, again much like 

for AdoCbl. Our data finally provide clarity to what in the literature to date has been a confused and contradictory picture. We 

conclude that, although the upper axial position of MeCbl and AdoCbl does impact their reactivity to some extent, the remarkable 

biochemical diversity of these fascinating molecules is most likely a result of tuning by their protein environment. 

INTRODUCTION 

Vitamin B12 is vital to the healthy function of both animals and 

microbes,1 and its deficiency in humans can lead to potentially 

serious haematological and neuropsychiatric disorders.2 It be-

longs to a family of six-coordinate cobalt corrinoid macrocycles 

known as the cobalamins.3 In the biologically active cobalamin 

derivatives, the lower axial position is usually occupied by the 

5,6-dimethylbenzimidazole substituent from the corrin ring, 

whereas the upper axial position is variable (Figure 1A). The 

best-described role of these derivatives is as cofactors to various 

metabolic enzymes,4 whose activation mechanism depends on 

the identity of the upper-axial ligand. Methylcobalamin 

(MeCbl) is a methyltransferase5 coenzyme where, upon sub-

strate binding, the covalent CoC bond to the methyl breaks 

heterolytically, converting CoIII to CoI and transferring a methyl 

cation to the substrate. By contrast, upon substrate binding to 

B12-dependent mutase6 and eliminase7 enzymes, the CoC bond 

in 5’-deoxyadenosylcobalamin (AdoCbl) breaks homolytically, 

producing a 5’-deoxyadenosyl-cob(II)alamin radical pair (RP) 

and triggering radical-mediated catalysis. It is still not clear to 

what extent the upper axial ligand tunes cobalamin reactivity. 

 B12 derivatives can also undergo extensive photochemis-

try.8 This sensitivity to light was first observed shortly after 

their discovery,9 and has since been used to investigate the elec-

tronic structure of cobalamins with different upper-axial lig-

ands,8, 10-22 and how this structure and the protein environment23-

27 influences their reactivity. In recent years, both AdoCbl and 

MeCbl have also been discovered to have roles as chromo-

phores to light-activated, bacterial transcriptional regulators.8, 

28-35 As with its enzymatic activation, the photoexcitation of 

AdoCbl free in solution leads to the 5’-deoxyadenosyl-
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cob(II)alamin RP (Figure 1B). The RP is singlet (S)-born,36 pro-

duced with near unity quantum yield,20 and this fate appears to 

be independent of the excitation wavelength.17 Unlike its enzy-

matic activation, the photolysis of free MeCbl also generates a 

RP (methyl-cob(II)alamin). The photophysical pathway leading 

to radicals (Figure 1C), however, is more complex than that of 

AdoCbl. Transient absorption experiments have revealed that 

two photodissociation pathways are possible at around physio-

logical pH, the relative extent of which is dependent on the ex-

citation wavelength.17 After photoexcitation at 530 nm, for ex-

ample, most excited molecules relax to a metal-to-ligand charge 

transfer-like S1 state, from which 85% relax back to the ground 

state and 15% form RPs. If higher excited states are initially 

populated, however, (e.g., by photoexcitation at ~ 400 nm), a 

population of RPs is produced directly from these higher states 

(e.g., with a yield of ~ 25% at 400 nm). The remaining popula-

tion relaxes to the S1 state, which then non-radiatively decays 

to the ground state or forms RPs as before.  

 The differences in photoresponse of MeCbl and AdoCbl 

have the strong potential to inform on how the chemistry of co-

balamins is tuned by their ligation and protein environment. 

This potential is currently being severely limited, however, by 

the significant confusion in the literature about the multiplicity 

of the RP precursors following photoexcitation of MeCbl. Mag-

netic field effect (MFE) data suggest that, like AdoCbl, MeCbl 

RPs are S-born.24, 37 Conservation of spin means that the RP 

precursors are therefore also in a S excited state. By contrast, 

chemically induced dynamic electron polarization (CIDEP) 

electron paramagnetic resonance (EPR) signals following the 

photolysis of both MeCbl36, 38 and its analogue, methylaquoco-

baloxime,39 have been interpreted to originate from triplet 

mechanism (TM) polarization (section 2.1.1. Supporting Infor-

mation). Triplet (T)-born RPs are consistent with initial time-

dependent density functional theory (TD-DFT) calculations, 

which claimed that photolysis of the CoC bond in MeCbl is 

mediated by a repulsive T-state.40 Later TD-DFT from the same 

group, however, appeared to reconcile with the MFE data, indi-

cating that intersystem crossing to the T-excited state is likely 

to have a low probability, implying that the RP precursors are 

indeed S.41 To add further to the confusion, Bussandri et al.36 

argue that their CIDEP data might be explained by either T-born 

RPs and ST0 spin-state interconversion or S-born RPs and ST1 

interconversion (section 2.1.2 Supporting Information). All 

such assignments are rather speculative, however, as none of 

the EPR studies to date have been supported by spin dynamic 

simulations. 

Herein, we use a combination of time-resolved Fourier 

transform-EPR (FT-EPR), MFE experiments and spin dynamic 

simulation to provide the first comprehensive description of the 

photochemical spin-dynamics of MeCbl at neutral pH. The data 

reveal that, like AdoCbl, geminate methyl-cob(II)alamin RPs 

(i.e., those formed immediately following bond homolysis) are 

S-born following photoexcitation and that this multiplicity ap-

pears to be independent of excitation wavelength. Spin polari-

zation from these S-born geminate pairs is combined with sig-

nificant polarization from spin correlated methyl-methyl RPs 

following the random encounter of freely diffusing radicals 

(known as ‘f-pairs’). 

 

Figure 1. (A) Structure of cobalamin with methyl and 5’-deoxy-

adenosyl as upper axial ligands (‘R’, pink) and 5,6-dimethylben-

zimidazole as lower axial ligand (green). Schematic diagrams dis-

playing photophysical and photochemical dynamics of AdoCbl (B) 

and MeCbl (C). The photoresponse of AdoCbl is independent of 

excitation wavelength, whereas MeCbl has been shown to depend 

on the excitation wavelength (blue and green arrows, panel C – see 

main text for discussion). Ado·+·Cbl – 5’-deoxyadenosyl-

cob(II)alamin RP; Me·+·Cbl – methyl-cob(II)alamin RP; RPs in 

brackets are within the solvent cage, those without are solvent-sep-

arated; {Me-++Cbl}31, 34 – metal-to-ligand charge transfer state. 

{A}, {B} and {I} in panel B represent short-lived intermediates, 

with kA, kB and kI their rates of formation. k1 and k2 in panel C are 

rates of formation of the ‘prompt’ RP and metastable photoproduct, 

respectively. In both B and C: kescape – rate of escape from the sol-

vent cage; khomolysis – rate of CoC homolysis; krecovery – rate of non-

radiative recovery to the ground state. Adapted from Shiang et al.17 
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RESULTS AND DISCUSSION 

The methyl radical signal contains polarization from 
both geminate RPs and those formed following diffusive 
encounter 

All time-resolved FT-EPR experiments were conducted using a 

continuous-flow cell built in-house (details in Supporting Infor-

mation, Section 1, Scheme S1 and Figures S1&2). First, meas-

urements of methyl radicals were conducted at 9 GHz following 

photoexcitation of MeCbl at 532 nm in aqueous buffer.  At 

room temperature, only the methyl radical is detectable using 

FT-EPR owing to the fast relaxation of the cob(II)alamin radi-

cal.42 Example spectra at five different delays-after-flash (DAF) 

are shown in Figure 2A. The measured hyperfine coupling of 

2.26 mT is in agreement with previously published data for the 

methyl radical.36, 43 Initially, the photochemically generated RPs 

are spin polarized, and the spectra in Figure 2A therefore devi-

ate from the 1:3:3:1 pattern expected for a population of methyl 

radicals at thermal equilibrium. The spectra exhibit 4 resonance 

lines that are all in absorption with the high field lines enhanced 

compared to the low field side. This high to low field distortion 

increases with increasing DAF, and the lowest field resonance 

line ultimately begins to change from an absorptive to an emis-

sive signal at DAF = 360 ns. 

 To investigate the origin of this spin polarization and its 

evolution with time, attempts were made to simulate the data in 

Figure 2A by combining the polarization patterns for the methyl 

radical generated through the following possible polarization 

mechanisms (Figure 2B): 

1) Absorptive triplet mechanism (TM)  

2) Emissive TM  

3) S-born ST0 radical pair mechanism (RPM)  

4) T-born ST0 RPM  

5) S-born ST1 RPM (including net effect from the 

cob(II)alamin radical) 

6) T-born ST1 RPM (including net effect from the 

cob(II)alamin radical). 

For full details of the simulation procedure refer to Section 2 

and Figure S3 of the Supporting Information. We found that no 

combination of the above polarization patterns is capable of re-

producing the polarization patterns observed in Figure 2A (e.g., 

Figure S4). TM polarization arises from selective population of 

T excited states during intersystem crossing in the RP precursor, 

which is then transferred to the radicals.44-45 The result is polar-

ization very close to the 1:3:3:1 ratio produced by equilibrium 

polarization. Depending on which T sub-levels are populated 

during intersystem crossing, this polarization is either entirely 

absorptive (Figure 2B.1) or entirely emissive (Figure 2B.2) and 

lacks any of the high to low field distortion we observe. In many 

observations of CIDEP, RPM polarization gives rise to low 

field emissive/high field absorptive (E/A) or A/E polarization 

patterns. In this system, however, the very large difference in g-

values between the methyl and cob(II)alamin radicals means 

that all of the RPM polarization patterns are also close to the 

1:3:3:1 ratio (Figures 2B.3-6).36    

 

Figure 2. (A) FT-EPR spectra of the methyl radical at five different 

DAF following photoexcitation of MeCbl at 532 nm.  (B) Theoret-

ical spectra for the methyl radical from different spin polarization 

mechanisms. The negative hyperfine value for the methyl radical is 

taken into account. TM - triplet mechanism; subscript a – absorp-

tive; subscript e - emissive; RPM - radical pair mechanism, origi-

nating from mixing of S and T0 or S and T1 states and each from 

T-born or S-born pairs. Simulation of FT-EPR spectra using a com-

bination of absorptive TM / methyl-methyl f-pairs (C) and ST1 S-

born RPM / methyl-methyl f-pairs (D). Fractional contributions from 
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each form of polarization is stated within each panel. All data were 

acquired in aqueous buffer at room temperature. 

Another source of spin polarization is therefore necessary 

to explain the observed FT-EPR spectra and their time depend-

ence. Considering likely dynamic processes and given the need 

for a substantial difference in the intensity of the two low field 

lines relative to the two high field lines, we propose that key to 

the observed polarization is the involvement of freely diffusing 

pairs (f-pairs) consisting of two methyl radicals from two dis-

tinct precursor molecules. Such f-pairs have no difference in g-

values; therefore ST0 RPM polarization patterns exhibit the fa-

miliar E/A pattern (Figure 2B.7). Using any absorptive 1:3:3:1 

polarization pattern (Figures 2B.1, 4 & 5 ) in combination with 

increasing proportions of f-pair polarization allows all observed 

spectra to be simulated with good accuracy (Figures 2C&D and 

S5-8). For clarity, signal intensities for the data and simulations 

in Figures 2C&D are also plot as bar charts with error bars in 

Figures S9A&B, respectively. The fact that this distortion in-

creases with time is also consistent with polarization from f-

pairs, which form following diffusion of the methyl radicals 

away from the geminate pairs. We therefore hypothesized at 

this stage that the magnitude of f-pair polarization increased 

with DAF. We will address this in greater detail below. 

 

The majority of geminate RPs created following photol-
ysis of MeCbl are S-born 

First, we investigated the question of the correct source of the 

initial, absorptive pattern that is close to the 1:3:3:1 ratio. As the 

spectra in Figure 2B indicate, this can have three possible ori-

gins: 

1) Absorptive TM 

2) T-born ST0 RPM 

3) S-born ST1 RPM 

where 1) and 2) can, in principle, both be generated by the same 

T-born RPs. Because of the similarity between the three pat-

terns, there is no way to determine unequivocally which of these 

mechanisms are responsible from the FT-EPR spectra alone. 

That said, given the large hyperfine couplings of the 

cob(II)alamin radical, ST1 RPM polarization is expected to be 

large and readily observable in this reaction.36 It is therefore 

possible to simulate the observed spectra using only S-born 

geminate RPs, which would be consistent with existing MFE 

data24, 37 and the most recent  TD-DFT calculations.41 In further 

support for this assignment is the fact that TM polarization ob-

served in the MeCbl analogue, methylaquocobaloxime, is emis-

sive39 rather than absorptive. 

To investigate further we analyzed the magnetic sensitiv-

ity of MeCbl photolysis, which again is consistent with predom-

inantly S-born RPs (Figure 3). In previous MFE studies with 

MeCbl, we conducted both photolysis and detection within a 

stopped-flow spectrophotometer using white light illumination 

from a Xe arc lamp.24 Using a similar experimental setup 

adapted to better align with the FT-EPR experiments, here we 

continuously illuminated a viscous, aqueous solution (50% 

glycerol) of MeCbl using a 530 nm LED under anaerobic con-

ditions and exposure to a 100 mT magnetic field. Throughout, 

accumulation of the cob(II)alamin radical was monitored as a 

function of time using light from the arc lamp monochromated 

to 470 nm. These data (Figure 3A) show that less cob(II)alamin 

accumulates as a function of time when the system is exposed 

to 100 mT, and are therefore consistent with magnetically-sen-

sitive RPs being predominantly S-born (Figure 3B). In zero ap-

plied field the S-born methyl-cob(II)alamin RP can efficiently 

interconvert with all three T RP spin-states, none of which can 

Figure 3.  (A) Continuous-wave photolysis of MeCbl in an anaer-

obic, aqueous solution of 50% glycerol using a 530 nm LED. Top 

plot: accumulation of the cob(II)alamin radical was monitored by 

following the absorption at 470 nm in the absence (black) and pres-

ence (blue) of a 100 mT magnetic field. Bottom plot: the magnitude 

of the magnetic field effect (MFE) is illustrated by subtracting the 

Abs(0 mT) from Abs(100 mT). The percentage MFE was esti-

mated to be 6.6  1.2% by dividing the Abs(0 mT) by the peak 

Abs(100 mT)  Abs(0 mT) at the corresponding time point.  

Schemes illustrating the predicted effects of a 100 mT magnetic 

field on the RP reaction dynamics following the photolysis of 

MeCbl if the methyl-cob(II)alalmin RP were S-born (B) or T-born 

(C). The yield of escape products (EP; i.e., cob(II)alamin) is higher 

for T-born RPs exposed to a 100 mT magnetic field than for S-born 

pairs under the same conditions. See main text for full discussion. 
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recombine to the ground state. A 100 mT magnetic field satu-

rates the Zeeman effect of this RP,24 in which case the S spin-

state can only interconvert with the T0 spin state. The relative 

population of S RPs is therefore higher for a S-born RP exposed 

to 100 mT compared to zero applied field and hence the proba-

bility of recombination is greater. Hence less escape product (in 

this case the cob(II)alamin radical) accumulates, as we observe 

in Figure 3A. By contrast, for a T-born RP the saturation of the 

Zeeman effect by a 100 mT magnetic field would instead trap 

the T1 RP spin-states, thus increasing the T population relative 

to no applied field (Figure 3C). Here, the extent of recombina-

tion from S RPs would therefore decrease and the escape prod-

uct yield would correspondingly increase, which we do not ob-

serve. 

When viewed in combination with the FT-EPR data, the 

MFE data support the hypothesis that the photolysis of MeCbl 

following photoexcitation using green light results in predomi-

nantly S-born geminate RPs. We cannot unequivocally rule out 

the possibility that both singlet and triplet geminate RPs are 

formed as long as there is a greater total number of singlet RPs 

than triplet RPs. Consistent with Occam’s razor, however, all 

subsequent simulations in this work were performed by com-

bining different admixtures of ST1 RPM polarization from S-

born geminate RPs (Figure S4E) and methyl-methyl f-pairs 

(Figure S4G). Most spin-correlated f-pairs are by definition T-

born because the encounter of freely diffusing pairs of radicals 

in the S spin-state results in recombination (assuming the prod-

uct is a S ground state molecule). Because those that encounter 

as T-pairs cannot recombine, they become T-born RPs that are 

initially spin polarized, and which can undergo subsequent spin 

dynamics. We were thus able to obtain excellent fits to the ex-

perimental spectra (Figures 2D, S8 and S9), and believe these 

assignments resolve the existing contradictory assignments in 

the literature. 

 

Both relaxation and methyl radical diffusion control the 
evolution of spin polarization  

As stated above, the fact that the distortion of the polarization 

pattern in Figure 2A increases with time is, at least in principle, 

consistent with an increasing population of f-pairs as the data 

acquisition proceeds. The generation of f-pairs is a bimolecular 

process and therefore follows second order kinetics, which are 

concentration-dependent. By extension, one might expect the 

extent of distortion at any one point in time to be dependent on 

the concentration of MeCbl. We find that this is not the case. In 

Figure 4A, the f-pair contribution to the polarization pattern is 

plotted as a function of DAF for MeCbl concentrations ranging 

from 0.5–3 mM. This range was chosen because below 0.5 mM 

the signal to noise ratio is too poor to fit the data with confi-

dence (Figure S8A) and at 3 mM the sample absorbs almost 

100% of photons (Supporting Information, Section 3). Alt-

hough the contribution of methyl-methyl f-pairs to the polariza-

tion pattern increases with DAF there is no significant differ-

ence between each concentration (Figures 4A and S8). 

 

Figure 4.  (A) Relative contribution of methyl-methyl f-pairs to the 

polarization pattern of the time-resolved FT-EPR signal as a func-

tion of [MeCbl]. (B) Example single exponential fit (red) of free 

induction decay at the 346 mT field position (black) to give a T1 = 

75.20  19.40 ns. All data were acquired in aqueous buffer at room 

temperature. 

Although perhaps surprising, the lack of a concentration-

dependence can be explained by assessing the expected diffu-

sion kinetics of methyl radicals. We calculated (Supporting In-

formation, Section 4) that the approximate time required for 

methyl-methyl f-pair formation in aqueous solution following 

photolysis of MeCbl in the concentration range 0.5 – 3 mM at 

532 nm varies between ~ 30 – 5 ns. The majority of f-pairs are 

therefore formed within the 80 ns that represents the earliest 

DAF we measure. Why then do we observe a time dependence 

of the f-pair contribution to the polarization pattern for methyl 

radicals? A monoexponential fit of the free induction decay fol-

lowing MeCbl photolysis at 532 nm in aqueous buffer gives a 

T1 of 75 ± 19 ns (Figure 4B). This decay rate is consistent with 

the time evolution of the polarization observed in Figure 2.  

Thus, the observed time dependence of the f-pair contribution 

is predominantly because of relaxation reducing the amount of 

ST1 RPM polarization with time relative to that from f-pairs, 

the absolute concentration of which remains relatively constant.  

If polarization from f-pairs is pertinent, then their diffusion 

kinetics will have a strong dependence on solvent viscosity. We 

therefore hypothesized that the time evolution of the polariza-

tion pattern will change following photolysis of MeCbl in a 

50% aqueous solution of glycerol. This proved to be the case 

(Figures 5 and S10). The polarization pattern observed here is 

qualitatively similar to that observed in non-viscous solution 

(Figure 2A), with high field enhancement. An increase in the 

resonance line intensities is evident (Figure 5A), presumably 

owing to the RP cage effect of the viscous medium.  Further-

more, the spectrum at the earliest DAF of 80 ns is closer to the 

predicted 1:3:3:1 pattern than that observed in non-viscous so-

lution and, although the spectral distortion increases with time, 

it does so to a lesser extent (Figures 5A and S10). These data 

are consistent with the accumulation of the distorting f-pair po-

larization happening more slowly in viscous solution owing to 

slower diffusion kinetics. This is confirmed by the now signifi-

cant dependence on MeCbl concentration of the f-pair contribu-

tion to the polarization pattern (Figures 5B and S10), which is 

consistent with the f-pairs being formed in 50% glycerol on or-

der of ~ 300 – 30 ns (for 0.3 – 3 mM MeCbl, respectively, Sup-

porting Information Section 4).  
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Figure 5. Unless stated otherwise, all data were acquired in an 

aqueous solution of 50% glycerol. (A) FT-EPR spectra of the me-

thyl radical at five different DAF following photoexcitation of 

MeCbl at 532 nm. (B) Relative contribution of methyl-methyl f-

pair polarization to the time-resolved FT-EPR signal at various 

DAF as a function of [MeCbl]. Simulation of FT-EPR spectra using 

a combination of ST1 RPM and methyl-methyl f-pair polarization, 

for DAF 80 ns (C) and 360 ns (D). (E) Comparison of f-pair con-

tribution in aqueous solution (orange) and in 50% glycerol (green).  

As before, the data can be accurately simulated using a 

combination of ST1 RPM from geminate pairs and polarization 

from methyl-methyl f-pairs (Figures 5C&D and S10). As ex-

pected, at high viscositythe contribution from f-pairs is lower at 

each time point than in aqueous solution (Figure 5E). Taken to-

gether, it is clear from these data that, in combination with 

slightly slower relaxation kinetics with increasing viscosity 

(~120 ns, Figure S11), slower diffusion of the methyl radicals 

now significantly contributes to the time evolution of the signal. 

This provides strong evidence for the contribution of methyl-

methyl f-pair polarization to the methyl radical spectra follow-

ing photolysis of MeCbl. It is possible that methyl-

cob(II)alamin f-pairs are also formed. RPM polarization gener-

ated from such f-pairs, however, would have the same intensity 

pattern as the original geminate pairs and thus cannot be sepa-

rated based on the extent of spectral distortion. 

 

The spin dynamics following methylcobalamin photoly-
sis are independent of excitation wavelength 

As outlined in the introduction, after excitation at 532 nm 100% 

of photoexcited MeCbl molecules decay to the S1 state before 

either relaxing to the ground state or generating RPs.17, 19 By 

contrast, at shorter excitation wavelengths a sub-population 

(e.g., 25% at 400 nm) undergo homolysis directly from a higher 

excited state with the remaining 75% decaying to S1 and pro-

ceeding as for excitation at 532 nm (Figure 1B).17 The yield of 

RPs following excitation at shorter wavelengths is therefore 

greater. We initially hypothesized that the different RP precur-

sor multiplicities proposed in the literature36, 40-41 might be ac-

counted for by different spin dynamics from each of these pho-

tophysical pathways. The data in Figure 6 show that this appears 

not to be the case. The resonance line intensities following pho-

tolysis at 355 nm of MeCbl in aqueous buffer (Figure 6A) are 

qualitatively similar to those observed following excitation at 

532 nm (Figure 2A). Again, the data can be simulated using a 

combination of ST1 RPM and methyl-methyl f-pair polariza-

tion patterns (Figures 6A and S12). Moreover, the spectral dis-

tortion also decreases at any particular DAF with increasing sol-

vent viscosity (Figures 6B and S13) consistent with restricted 

diffusion of the methyl radicals and thus a reduced contribution 

to the polarization from f-pairs (Figure 6C). For clarity, the data 

and simulations presented in Figures 6A&B, alongside the error 

of the f-pair contribution, are again plot as bar charts in Figure 

S14.  

The similarity between the spin dynamics following pho-

toexcitation at 355 nm and 532 nm is borne out both by the FT-

EPR data and by the MFE data. The extent of spectral distortion 

in the FT-EPR data from each excitation wavelength is almost 

identical (Figure 6D), as is the magnitude and phase of the MFE 

(Figures 3A and 6E). Both sets of data in Figures 6D&E were 

acquired in 50% glycerol so the conditions are consistent. Be-

cause of the faster kinetics of formation,17 one might have ex-

pected that the RPs produced more directly from higher excited 

states would result in the generation of f-pairs with faster kinet-

ics than those that are generated via the S1 state. If this were the 

case, the geminate pair lifetime would be shorter, thus reducing 

the extent of ST1 RPM polarization in the signal and increasing 

the relative f-pair contribution. Moreover, one would expect the 

MFE magnitude to be reduced. We observe neither of these 

things in our data, however, and therefore conclude that the rel-

ative contributions to the spin dynamics from geminate pairs 

and f-pairs at each excitation wavelength is comparable. 
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Figure 6. Overlaid experimental (black) and simulated (red) FT-

EPR spectra of the methyl radical following photoexcitation of 

MeCbl at 355 nm at DAF = 80 and 360 ns, in aqueous buffer (A) 

and 50% glycerol (B). (C) Comparison of f-pair contribution in 

aqueous solution (orange) and 50% glycerol (green). (D) Overlaid 

FT-EPR spectra acquired in 50% glycerol at a DAF = 80 ns follow-

ing photoexcitation at 532 (blue) and 355 nm (dashed green). (E) 

Effect of a 100 mT magnetic field on the accumulation of the 

cob(II)alamin radical following continuous wave illumination at 

365 nm.  

SUMMARY & CONCLUSIONS 

The literature to date concerned with the photolysis of 

MeCbl paints a rather confused picture regarding the spin mul-

tiplicity of the resulting RPs and their precursors. Various ex-

perimental17, 19, 24, 36-39 and theoretical40-41, 46-48 approaches have 

reported evidence of either S- or T-born RPs. Different ap-

proaches of the same method have generated data consistent 

with different multiplicities and some of the same data sets have 

been interpreted as potentially consistent with either multiplic-

ity. The data we report here from FT-EPR, MFE and spin dy-

namic simulations finally provides an unambiguous account of 

the photochemical spin dynamics of MeCbl. The recent discov-

ery of photobiological roles for B12 cofactors, and their increas-

ing application as optogenetic tools49-50 and in light-responsive 

biomaterials,51 emphasizes the importance of a clear under-

standing of B12 photochemical dynamics.  

We show that several different combinations of spin po-

larization from both S- and T-born geminate RPs can accurately 

simulate the experimental FT-EPR data of the methyl radical 

following excitation at 532 nm. This fact might go some way to 

explaining much of the previous confusion in the literature. All 

of our simulations, however, require polarization from the for-

mation of methyl-methyl f-pairs following radical diffusion. 

Only this can explain: i) the extent of distortion we observe 

away from the 1:3:3:1 pattern expected of the methyl radical; 

ii) the viscosity dependence of this spectral distortion; and iii) 

the spectral evolution with time at higher viscosities. Rapid dif-

fusion of the methyl radical is consistent with previous transient 

absorption data, which, in contrast to AdoCbl, show little evi-

dence of geminate, methyl-cob(II)alamin recombination in 

aqueous solution.17, 52 Our MFE data are consistent with the 

geminate RPs being predominantly S-born. The simplest way 

to simulate our FT-EPR data and account for S-born geminate 

pairs is to combine S-born ST1 RPM polarization with that 

from methyl-methyl f-pairs. The hyperfine couplings of the 

cob(II)alamin radical are very large, and ST1 RPM polarization 

is therefore also expected to be large and readily observable in 

this reaction. 

We initially hypothesized that, because different photo-

physical pathways are accessible at different excitation wave-

lengths for MeCbl (Figure 1C),17 the multiplicity of the RP pre-

cursors too would be wavelength-dependent. Our FT-EPR and 

MFE data suggest this isn’t the case. Following photoexcitation 

of MeCbl at both 532 and 355 nm our data are consistent with 

S-born geminate pairs. It was also considered possible that me-

thyl radicals formed following prompt photolysis at 355 nm 

would form f-pairs both more rapidly and with higher concen-

trations as a function of time. In contrast to a previous report,36 

however, we did not find that the FT-EPR spectra of the methyl 

radical acquired following photoexcitation at 355 nm were 

more distorted than those acquired at 532 nm (Figure 6D). Be-

cause this distortion can only be accounted for by f-pair polari-

zation, it therefore appears that the relative proportion of gemi-

nate and f-pairs at each wavelength is similar. This is supported 

by the fact that the magnitude of the MFE at each wavelength 

is the same within error. A greater population of f-pairs would 

reduce the relative proportion of magnetically-sensitive gemi-

nate pairs and hence the magnitude of the MFE on the signal.  

We therefore conclude that, following photoexcitation, 

methyl-cob(II)alamin geminate RPs are predominantly if not 

entirely S-born and generate spin polarization via ST1 RPM 

(Figure 7). The small methyl radical then diffuses rapidly to 

form methyl-methyl f-pairs. Because the methyl radicals that 

encounter in the S spin-state react, most likely to form ethane, 

the spin-correlated f-pairs that do not are by definition T-born, 

and generate further spin polarization via ST0 RPM. Other side 
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reactions of the methyl radical are in principle possible, includ-

ing H-abstraction from somewhere on the cobalamin or possible 

reactions with the solvent. Such side reactions could perhaps 

contribute to an apparent limit to the f-pair contributions of 

somewhere between 30-40% (Figures 4A, 5E & 6C). Despite 

the fact the photophysics following excitation of MeCbl is 

wavelength-dependent, the subsequent spin dynamics are 

largely unaffected by excitation wavelength. The photolysis of 

both AdoCbl and MeCbl therefore generate S-born RPs. The 

only significant difference in this regard is that the quantum 

yield of photochemically-generated RPs from AdoCbl is signif-

icantly higher,20 and the yield of radicals from MeCbl only in-

creases with a larger input of energy.17 This might suggest that 

AdoCbl is more inclined towards radical chemistry than MeCbl. 

However, the fact that photolysis in solution of both forms gen-

erates RPs with similar spin dynamics suggests that it is pre-

dominantly the protein environment that tunes the reactivity of 

biologically active B12 derivatives. 

 

 

Figure 7. Schematic of the photochemical spin dynamics of 

MeCbl. The cobalamin (Cbl, orange oval and green loop) is sim-

plified for clarity. See main text for full discussion. h - absorption 

of a photon resulting in homolysis; kR – rate of RP recombination; 
1[ ] and 3[ ] – singlet and triplet spin-states, respectively, of the RPs; 

ST1 and ST0 – the specific RP spin-states between which intercon-

version takes place generating spin polarization; kF – rate of methyl 

radical diffusion to form methyl-methyl f-pairs. Various side reac-

tions are possible for the methyl radical, including the S-born f-

pairs recombining to form ethane (see main text for discussion), but 

these reaction channels have been left out of this figure for the sake 

of clarity. 

The dominant role of the protein in tuning B12 reactivity 

appears to be borne out in the AdoCbl-dependent photorecep-

tor, CarH. Here, the main photochemical pathway avoids radi-

cal pairs altogether,33, 53 despite the strong inclination of AdoCbl 

towards radical chemistry. That said, transient absorption data 

from the photolysis of MeCbl bound to methionine synthase 

suggests binding to the protein alone in the absence of substrate 

is not sufficient to significantly alter the photophysical branch-

ing and initial formation of the geminate RPs.19 In MeCbl-de-

pendent enzymes, therefore, it is highly likely that a combina-

tion of protein and substrate binding to the protein is required 

to guide MeCbl away from RP intermediates. This would be 

analogous to the fact that binding of AdoCbl to its dependent 

enzymes is not enough to weaken the CoC bond to the upper 

axial ligand,54 and that substrate binding is required to provide 

a ‘trigger’ for homolysis.23, 25, 55-56 

 

EXPERIMETAL DETAILS 

Materials 

The following chemicals were purchased and used without fur-

ther purification: MeCbl (methylcobalamin, Sigma), HEPES 

(Formedium Ltd), TEMPO (free radical, sublimed, ≥ 99%, Al-

drich), glycerol (Merck), glucose (Sigma), and glucose oxidase 

(from Aspergilus niger,C Sigma). The triple-coated neodym-

ium-iron-boron (NeFeB) permanent magnets were purchased 

from e-Magnetics UK. The 365 nm and 530 nm high-powered 

LEDs were purchased from ThorLabs. 

 

Time resolved continuous flow EPR 

All MeCbl sample solutions were prepared under red light in 

degassed aqueous 20 mM HEPES buffer with 0% or 50% glyc-

erol w/w, pH 7.5. Buffers were filtered and degassed with ni-

trogen and stored in an anaerobic glove box (Belle Technology) 

for at least 24 h before sample preparation. The concentration 

of each sample was confirmed using a Cary 60 UV-Vis spectro-

photometer (Agilent Technologies) using an extinction coeffi-

cient for MeCbl of ε520 nm = 7.7 mM-1 cm-1.57 All sample vessels 

were stoppered with Suba-seals and sealed with parafilm to en-

sure retention of anaerobic conditions during transfer to the 

EPR spectrometer. Prior to and during EPR measurements sam-

ples were purged with Ar. FT-EPR experiments were per-

formed on a Bruker ELEXSYS-500/580 X-band spectrometer 

using the pulsed mode with dielectric resonator (ER4118X-

MD-5) and a home-built continuous flow setup (for further de-

tails refer to the Supporting Information, Section 1). Briefly, 

flow was achieved through the EPR cavity using a single piston 

HPLC Gilson 305 pump and a quartz EPR flow cell. The re-

sponse of the sample to the microwave pulse was detected in 

quadrature using 4-step phase cycling routine. The second and 

third harmonic of a Brilliant blue B Nd:YAG laser (10 Hz) were 

used for excitation at 355 nm or 532 nm. The pulse energy at 

both wavelengths was attenuated to 20 mJ. Experiments were 

performed in triplicate, standard deviations are given in the 

Supporting Information. 

 

Simulations 

At thermal equilibrium, the hyperfine splitting pattern in the 

methyl radical EPR signal is expected to give four lines and an 

intensity pattern of 1:3:3:1. The transient spectra acquired 

shortly after photolysis of the Co-C bond in MeCbl, however, 

represent spin polarized states and the line intensities therefore 
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deviate from this pattern. In principle, such deviation can orig-

inate from one or more of various spin polarization mecha-

nisms. The spin polarized signal of the methyl radical was there-

fore simulated for all possible spin polarization mechanisms for 

the methyl radical (Supporting info, Section 2 and Figure S2B).  

The negative hyperfine value for the methyl radical was taken 

into account. Stick spectra were generated for each of the stand-

ard CIDEP models presented in the Supporting Information, 

based on the computed density matrix elements, in order to cal-

culate each of the intensity patterns. A Lorentzian line shape 

was then convoluted to the stick spectra to produce the simu-

lated spectra presented. All code was written in Fortran and 

compiled and executed on a standard desktop PC. Lineshape 

convolution was performed using Igor Pro software. 

Magnetic field effects 

All MeCbl samples (~30 μM) were prepared in degassed, 20 

mM HEPES/50% glycerol (w/w) pH 7.5 in a similar way to that 

described for the FT-EPR experiments. Glucose oxidase (13 

units/mL) and glucose (10 mM) were added to all samples ~ 10 

minutes prior to data acquisition to scavenge any residual oxy-

gen. In similar, previously published MFE experiments with B12 

cofactors,24 TEMPO was added to a final concentration of 1 

mM to selectively scavenge the alkyl radical. Data were ac-

quired here both in the presence and absence of TEMPO to in-

vestigate whether or not it affects the magnitude of the MFE. It 

does not (Supporting Information, Figure S15). 

 Spectroscopic data were collected using a MFE stopped-

flow spectrophotometer described previously,58 and adapted to 

allow continuous wave photoexcitation at specific wavelengths. 

In these experiments, the continuous wave-photolysis of MeCbl 

was achieved by using high-power, fibre-coupled LEDs. Sam-

ples were exposed to light centred at either 365 nm or 530 nm 

and the accumulation of the cob(II)alamin radical was probed 

at 470 nm using the monochromated emission from a Xe arc 

lamp. Static MFs of ≈ 100 mT, which are sufficient to saturate 

the Zeeman effect of B12 RPs,24 were generated by mounting 

pairs of NeFeB magnets in the unoccupied light-guide ports 

during data acquisition. Data were acquired at 25 °C over 100 

s. Data from the first 4 stopped-flow shots were discarded be-

cause of the dead-volume between the syringes and the cell. 

Each experiment consisted of a set of 6 replicates of field 

on/field off pairs (the order of which was randomized). 
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