1,035 research outputs found

    Synoptic study of the SMC SNRs using XMM-Newton

    Full text link
    We present a detailed X-ray spectral analysis of 13 supernova remnants (SNR) in the Small Magellanic Cloud (SMC). We apply both single-temperature non-equilibrium ionisation models and models based on the Sedov similarity solution, where applicable. We also present detailed X-ray images of individual SNRs, which reveal a range of different morphological features. Eight remnants, viz DEM S 32, IKT 2, HFPK 419, IKT 6, IKT 16, IKT 18 and IKT 23, are consistent with being in their Sedov evolutionary phase. IKT 6 and IKT 23 both have a clear shell like morphology with oxygen-rich X-ray emitting material in the centre. We draw attention to similarities between these two remnants and the well studied, oxygen-rich remnant IKT 22 (SNR 0102-72.3) and propose that they are more evolved versions of IKT 22. IKT 4, IKT 5, DEM S 128 and IKT 5 are evolved remnants which are in, or in the process of entering, the radiative cooling stage. We argue that the X-ray emission from these four remnants is most likely from the ejecta remains of type Ia SNe. Our modeling allow us to derive estimates for physical parameters, such as densities, ages, masses and initial explosion energies. Our results indicate that the average SMC hydrogen density is a factor of ~6 lower as compared to the Large Magellanic Cloud. This has obvious implications for the evolution and luminosities of the SMC SNRs. We also estimate the average SMC gas phase abundances for the elements O, Ne, Mg, Si and Fe.Comment: submitted to A&

    Measuring the cosmic ray acceleration efficiency of a supernova remnant

    Get PDF
    Cosmic rays are the most energetic particles arriving at earth. Although most of them are thought to be accelerated by supernova remnants, the details of the acceleration process and its efficiency are not well determined. Here we show that the pressure induced by cosmic rays exceeds the thermal pressure behind the northeast shock of the supernova remnant RCW 86, where the X-ray emission is dominated by synchrotron radiation from ultra-relativistic electrons. We determined the cosmic-ray content from the thermal Doppler broadening measured with optical spectroscopy, combined with a proper-motion study in X- rays. The measured post-shock proton temperature in combination with the shock velocity does not agree with standard shock heating, implying that >50% of the post-shock pressure is produced by cosmic rays.Comment: Published in Science express, 10 pages, 5 figures and 2 table

    X-ray spectral imaging and Doppler mapping of Cassiopeia A

    Get PDF
    A detailed X-ray spectral analysis of Cas A using a deep exposure from the EPIC-MOS cameras on-board XMM-Newton is presented. Spectral fitting was performed on a 15x15 grid of 20"x20" pixels using a two component non-equilibrium ionisation model (NEI) giving maps of ionisation age, temperature, interstellar column density, abundances and Doppler velocities. The abundances of Si, S, Ar and Ca are strongly correlated. The abundance ratios are consistent with the nucleosynthesis yield from the collapse of a 12 Msun progenitor. The abundance ratios Ne/Si, Mg/Si, Fe/Si and Ni/Si are very variable and distinctly different from S/Si, Ar/Si and Ca/Si, in line with the current explosive nucleosynthesis models. The ionisation age and temperature of both NEI components varies considerably over the remnant. Accurate determination of these parameters yield reliable Doppler velocities for both components. The data are consistent with a plasma velocity of 2600 km/s at the shock radius of 153" implying a primary shock velocity of 4000+/-500 km/s. The Si-K and S-K line emission from the cool component is confined to a relatively narrow shell with radius 100-150". This component is almost certainly ejecta material which has been heated by a combination of the reverse shock and heating of ejecta clumps as they plough through the medium which has been pre-heated by the primary shock. The Fe-K line emission is expanding faster and spans a radius range 110-170". The bulk of the Fe emission is confined to two large clumps and it is likely that these too are the result of ablation from ejecta bullets rather swept up circumstellar medium.Comment: 10 pages, 11 figures, submitted to Astronomy and Astrophysic

    Using the Memories of Multiscale Machines to Characterize Complex Systems

    Full text link
    A scheme is presented to extract detailed dynamical signatures from successive measurements of complex systems. Relative entropy based time series tools are used to quantify the gain in predictive power of increasing past knowledge. By lossy compression, data is represented by increasingly coarsened symbolic strings. Each compression resolution is modeled by a machine: a finite memory transition matrix. Applying the relative entropy tools to each machine's memory exposes correlations within many time scales. Examples are given for cardiac arrhythmias and different heart conditions are distinguished.Comment: 4 pages, 2 figure

    Test engineering education in Europe: the EuNICE-Test project

    Get PDF
    The paper deals with a European experience of education in industrial test of ICs and SoCs using remote testing facilities. The project addresses the problem of the shortage in microelectronics engineers aware with the new challenge of testing mixed-signal SoCs far multimedia/telecom market. It aims at providing test training facilities at a European scale in both initial and continuing education contexts. This is done by allowing the academic and industrial partners of the consortium to train engineers using the common test resources center (CRTC) hosted by LIRMM (Laboratoire d'Informatique, de Robotique et de Microelectronique de Montpellier, France). CRTC test tools include up-to-date/high-tech testers that are fully representative of real industrial testers as used on production testfloors. At the end of the project, it is aimed at reaching a cruising speed of about 16 trainees per year per center. Each trainee will have attend at least one one-week training using the remote test facilities of CRTC

    The mass and energy budget of Cassiopeia A

    Get PDF
    Further analysis of X-ray spectroscopy results recently obtained from the MOS CCD cameras on-board XMM-Newton provides a detailed description of the hot and cool X-ray emitting plasma in Cas A. Measurement of the Doppler broadening of the X-ray lines is consistent with the expected ion velocities, ~1500 km/s along the line of sight, in the post shock plasma. Assuming a constant total pressure throughout the remnant we estimate the total remnant mass as 10 Msun and the total thermal energy as 7E43 J. We derive the differential mass distribution as a function of ionisation age for both X-ray emitting components. This distribution is consistent with a hot component dominated by swept up mass heated by the primary shock and a cool component which are ablated clumpy ejecta material which were and are still being heated by interaction with the preheated swept up material. We calculate a balanced mass and energy budget for the supernova explosion giving 1E44 J in ejected mass; approximately 0.4 Msun of the ejecta were diffuse with an initial rms velocity of 15000 km/s while the remaining ~1.8 Msun were clumpy with an initial rms velocity of ~2400 km/s. Using the Doppler velocity measurements of the X-ray spectral lines we can project the mass into spherical coordinates about the remnant. This provides quantitative evidence for mass and energy beaming in the supernova explosion. The mass and energy occupy less than 4.5 sr (<40 % of the available solid angle) around the remnant and 64 % of the mass occurs in two jets within 45 degrees of a jet axis. We calculate a swept up mass of 7.9 Msun in the emitting plasma and estimate that the total mass lost from the progenitor prior to the explosion could be as high as ~20 Msun.Comment: 8 pages, 7 figures, submitted to Astronomy & Astrophysic

    Urban eddy covariance measurements reveal significant missing NOx emissions in Central Europe

    Get PDF
    Nitrogen oxide (NOx) pollution is emerging as a primary environmental concern across Europe. While some large European metropolitan areas are already in breach of EU safety limits for NO2, this phenomenon does not seem to be only restricted to large industrialized areas anymore. Many smaller scale populated agglomerations including their surrounding rural areas are seeing frequent NO2 concentration violations. The question of a quantitative understanding of different NOx emission sources is therefore of immanent relevance for climate and air chemistry models as well as air pollution management and health. Here we report simultaneous eddy covariance flux measurements of NOx, CO2, CO and non methane volatile organic compound tracers in a city that might be considered representative for Central Europe and the greater Alpine region. Our data show that NOx fluxes are largely at variance with modelled emission projections, suggesting an appreciable underestimation of the traffic related atmospheric NOx input in Europe, comparable to the weekend-weekday effect, which locally changes ozone production rates by 40%
    • …
    corecore