36 research outputs found

    Cross-sections for neutrino-nucleus interactions on 12C^{12}C and 16O^{16}O

    Get PDF
    We calculate cross sections for neutral current quasi-elastic neutrino-nucleus scattering within a continuum RPA model, based on a Green's function approach. As residual interaction a Skyrme force is used. The unperturbed single particle wave functions are generated using either a Woods-Saxon potential or a Hartree-Fock calculation. These calculations have interesting applications. Neutrinos play an important role in supernova nucleosynthesis. To obtain more information about these processes, cross sections are folded with a Fermi-Dirac distribution with temperatures of approximately 10 9 K

    Cross-sections for neutral-current neutrino-nucleus interactions: applications for 12^{12}C and 16^{16}O

    Get PDF
    We calculate cross sections for neutral current quasi-elastic neutrino-nucleus scattering within a continuum RPA model, based on a Green's function approach. As residual interaction a Skyrme force is used. The unperturbed single particle wave functions are generated using either a Woods-Saxon potential or a Hartree-Fock calculation. These calculations have interesting applications. Neutrinos play an important role in supernova nucleosynthesis. To obtain more information about these processes, cross sections are folded with a Fermi-Dirac distribution with temperatures of approximately 109^9 K

    Electric monopole transitions from low energy excitations in nuclei

    Get PDF
    Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, ρ2\rho^2(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between ρ2\rho^2(E0) and isotopic shifts

    SU(4) symmetry in the extended proton-neutron interacting boson model: multiplets and symmetry breaking

    Get PDF
    The manifestation of SU(4)SU(4) symmetry within an interacting boson model including particle-like and hole-like π\pi- and ν\nu-bosons is shown for light nuclei around the Z=N=8 shell. We also present a consistent description of the particle-hole (intruder spin or II spin) multiplets in the Extended Interacting Boson Model (EIBM) and of π\pi-ν\nu (FF spin) multiplets in the IBM-2 as a breaking of this SU(4)SU(4) symmetry

    New particle-hole symmetries and the extended interacting boson model

    Get PDF
    We describe shape coexistence and intruder many-particle-hole (mp-nh)excitations in the extended interacting boson model EIBM and EIBM-2,combining both the particle-hole and the charge degree of freedom.Besides the concept of I-spin multiplets and subsequently SU(4)SU(4) multiplets, we touch upon the existence of particle-hole mixed symmetry states. We furthermore describe regular and intrudermany-particle-hole excitations in one nucleus on an equal footing, creating (annihilating) particle-hole pairs using the K-spin operatorand studying possible mixing between these states. As a limiting case,we treat the coupling of two IBM-1 Hamiltonians, each decribing the regular and intruder excitations respectively, in particular lookingat the U(5)U(5)-SU(3)SU(3) dynamical symmetry coupling. We apply such coupling scheme to the Po isotopes

    Shape coexistence in atomic nuclei and its spectroscopic fingerprints

    Get PDF
    In the present discussion we concentrate on shape coexistence asobtained within a deformed single-particle field as well as startingfrom the spherical shell-model, incorporating deformationeffects via the residual proton-neutron quadrupole interaction. Wediscuss in particular the appearance of shape coexisting phenomena inthe Pb region. In a second part then, we present a number ofexperimental fingerprints that allow to recognize the appearance ofshape coexisting phenomena or of shape mixing through the use ofselective experiments (e.g. band structure, spectroscopic factors,static moments, E0 properties and alpha-decay)

    Particle-hole excitations in the interacting boson model; 4, the U(5)-SU(3) coupling

    Get PDF
    In the extended interacting boson model (EIBM) both particle- and hole-like bosons are incorporated to encompass multi-particle-multi-hole excitations at and near to closed shells.We apply the group theoretical concepts of the EIBM to the particular case of two coexisting systems in the same nucleus exhibiting a U(5) (for the regular configurations) and an SU(3) symmetry (for the intruder configurations).Besides the description of ``global'' symmetry aspects in terms of I-spin , also the very specific local mixing effects characteristic for the U(5)-SU(3) symmetry coupling are studied.The model is applied to the Po isotopes and a comparison with a morerealistic calculation is made

    The nuclear shell model

    No full text
    corecore