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Abstract

The manifestation of SU(4) symmetry within an interacting boson model including particle-like and

hole-like �- and �-bosons is shown for light nuclei around the Z=N=8 shell. We also present a consistent

description of the particle-hole (intruder spin or I spin) multiplets in the Extended Interacting Boson

Model (EIBM) and of �-� (F spin) multiplets in the IBM-2 as a breaking of this SU(4) symmetry.
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The Interacting Boson Model has been introduced to describe quadrupole collective phenomena observed in

medium-heavy and heavy nuclei. The building blocks are nucleon-pairs with angular momentumL
� = 0+ and

2+ which are mapped onto s- and d-bosons, respectively. In the original Interacting Boson Model (IBM-1),

only one kind of s- and d-bosons are considered [1, 2].

Using the charge of the nucleons as a supplementary but essential degree of freedom, the IBM-2 was con-

structed enabling a classi�cation of states with the introduction of a new quantum label F , associated with

the F spin algebra SUF (2). The symmetry of the spatial part and of the charge part of the wave function

is determined by this F spin label. The total wave function, being the product of an orbital wave func-

tion with the F spin wavefunction, is symmetric and thus allows to consider states with possible values

F = N=2; N=2� 1; :::; j Fz j with Fz =
N��N�

2 . IBM-1 is incorporated in IBM-2 by the condition on the wave

functions : F = Fmax, hence demanding a totally symmetric orbital wave function. All the other possible

states have a 'mixed F spin symmetry'.

In an attempt to describe particle-hole excitations across the closed shell in the IBM-picture, an Extended

Interacting Boson Model (EIBM) was proposed [3] in which a particle or hole character gets assigned to the

s- and d-bosons. The symmetries in this model can be developed in analogy with the IBM-2, where now we

introduce the I spin (intruder spin) algebra SUI (2). By doing so we can consider states with a 'mixed I

spin symmetry', corresponding with a classi�cation I < Imax where Imax = N=2 and N the total number

of bosons. Applications of this model have shown to be successful in describing the coexistence of di�erent

symmetries for the groundstates and the 2p-2h intruder states in both the Z=50 and Z=82 region [4, 5]. Since

the EIBM states are restricted to those members of the I spin multiplet where the neutrons are considered

as the reference state, i.e. the I spin label is restricted to the proton con�guration only and we deman!

d I
� = 0, it shows to be ve ry important to construct a full Extended Proton-Neutron Interacting Boson

Model (EIBM-2) by introducing both the particle-hole character and the charge of the nucleons as a degree of

freedom for the bosons on equal footing. By doing so a new reduction scheme, containing an SU (4) algebra,

has been suggested [6].

In the present article we present an example of this SU (4) symmetry in the Z=N=8 mass region. Also, the

EIBM-2 allows us to describe the assumption I
� = 0 in both [4, 5] in a consistent way within the model.

In the same way it is shown how the F spin multiplets in IBM-2 applications are consistent with an SU(4)

symmetry breaking.

By introducing both the particle-hole character and the charge character of the bosons, the EIBM-2 was

constructed [6]. A �rst possible reduction scheme for the dynamical algebra U (24) is :

UL(6) � G� � OL(3)

U (24) � 

SU (4) :

(1)

The G� stands for the IBM-1 reductions of U (6) [1].

The generators for the SU (4) algebra can be considered as follows :

(i) The generators of the SU (2) algebra for the intruder spin (I spin) for the �-bosons and for the �-bosons :

Î
(�)
z = 1=2(N̂ (�)

p � N̂
(�)
h ); (2)

Î
(�)
+ = s

y
p;�sh;� + d

y
p;� �

~dh;�; (3)

Î
(�)
� = s

y
h;�sp;� + d

y
h;� �

~dp;�; (4)

with � = �; �.

(ii) The generators of the SU (2) algebra for the F spin for the particle bosons and for the hole bosons :

F̂
(�)
z = 1=2(N̂ (�)

� � N̂
(�)
� ); (5)
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F̂
(�)
+ = s

y
�;�s�;� + d

y
�;� �

~d�;�; (6)

F̂
(�)
� = s

y
�;�s�;� + d

y
�;� �

~d�;�; (7)

with � = p; h.

(iii) The generators of the SUB (2) algebra :

B̂z = 1=2(N̂ (�) � N̂
(�)); (8)

B̂+ = s
y
p;�sh;� + d

y
p;� �

~dh;� + s
y
h;�sp;� + d

y
h;� �

~dp;�; (9)

B̂� = s
y
p;�sh;� + d

y
p;� �

~dh;� + s
y
h;�sp;� + d

y
h;� �

~dp;�: (10)

We denote these algebras respectively by SUI(�) (2); SUI(�) (2); SUF (p) (2); SUF (h) (2) and SUB (2).

Taken together with the SUB (2) generators, the algebras SUI (2) and SUF (2), generated by symmetrising

the operators in (�, �) and (p,h) degrees of freedom respectively, now form an SU (3) algebra. So we can

consider a second reduction in EIBM-2 :

UL(6) � G� � OL(3)

U (24) � 

SU (4) � SU (3) � (SUI (2) 
 SUF (2)):

(11)

The above symmetries, as depicted in equations (1) and (11), can now be used to identify a number of

multiplets according to the SU (4) and SU (3) symmetries. We denote the con�guration of a nucleus with a

certain number of particle-like and hole-like �- and �-bosons as (N
(�)
p ; N

(�)
h ; N

(�)
p ; N

(�)
h ) and can visualize

this in a schematical way as presented in �gure 1.
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Figure 1:Con�guration of a nucleus with a given number of proton (particles and holes) and neutron (particles

and holes) pairs : N
(�)
p ; N

(�)
h ; N

(�)
p ; N

(�)
h respectively.

An SU (4) multiplet is de�ned as all the eigenstates in all the nuclei for a con�guration with a constant

total number of bosons N =
P

�;� N
(�)
� which are connected by the 10 ladder operators Î

(�)
� ; F̂

(�)
� ; B̂�. If we

consider the action of the operator B̂+ on a nucleus which has a con�guration described as in �gure 1, we

generate the con�guration (N
(�)
p + 1; N

(�)
h ; N

(�)
p ; N

(�)
h � 1) + (N

(�)
p ; N

(�)
h + 1; N

(�)
p � 1; N

(�)
h ) (see �gure 2).

It is obvious that the same con�guration can be established by action of the operator Î
(�)
+ F̂

(h)
+ + Î

(�)
� F̂

(p)
+ . To

�nd the equivalent operators for the action of the ladder operator B̂� we point out that it is the hermitian

conjugate of B̂+. Here, an important feature has to be pointed out : when one of! the ladder operators

B̂� acts on a state of a nucleus with a certain con�guration as indicated in �gure 1, the result will be the

sum of two eigenstates of two di�erent nuclei, as shown in �gure 2. In order to avoid any further problems

we will use the convention that this 'mixing of states belonging to di�erent nuclei' does not in
uence the

de�nition of the multiplet. Of course, when considering the Hamiltonian and its symmetries, we have to

consider the implications of this. Using this particular convention, it becomes clear that all members of a

certain SU (4) multiplet are connected by use of only 8 ladder operators associated with Î
(�) and F̂

(�)spin.
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Another implication of this convention is that the SU (4) multiplet can also be identi�ed as identical with the

SU (3) multiplet and also with the SUI (2)
 SUF (2) multiplet. For this reason, we shall only speak of SU (4)

multiplets, characterized by a total number of bosons N .
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Figure 2: The con�guration generated by acting with the operator B̂+ on the above con�guration, i.e. the

resulting con�guration (N
(�)
p + 1; N

(�)
h ; N

(�)
p ; N

(�)
h � 1) + (N

(�)
p ; N

(�)
h + 1; N

(�)
p � 1; N

(�)
h ).

In order to describe a system with a constant number of particle-like and hole-like �- and �-bosons, we can

write the following Hamiltonian :

Ĥ =
X

�;�

Ĥ
(�)
� +

X

�0;�00;�0;�00

V̂
(�0;�00)
�0;�00 ; (12)

where �; �
0
; �

00 = p; h and �; �
0
; �

00 = �; �, �0 6= �
00 or �0 6= �

00. By using the creation and annihilation

operators for the four types of bosons and considering up to second order, one obtains :

Ĥ
(�)
� = E

�;�
0 +

P
lm;l0m0 �

�;�
lm;l0m0b

y
��;lmb��;l

0m0

+1=2
P

limi
u
�;�

(li;mi)
b
y
��;l1m1

b
y
��;l2m2

b��;l3m3b��;l4m4 ;

V̂
(�0;�00)
�0;�00 =

P
limi

w
(�0;�00)
�0;�00;(li;mi)

b
y
�0�0;l1m1

b�0�0;l2m2b
y
�00�00;l3m3

b�00�00;l4m4 :

(13)

Since this Hamiltonian conserves all N
(�)
� , it satis�es :

[Ĥ; Î
(�)
z ] = [Ĥ; F̂ (�)

z ] = [Ĥ; B̂z] = 0: (14)

This also implies :

[Ĥ; Îz] = [Ĥ; F̂z] = 0: (15)

All these conditions express particle-number conservation which is fundamental to describe eigenstates of a

nucleus with a certain con�guration.

We now call SU (4) a dynamical symmetry for the system described by the Hamiltonian (12) if the following

conditions are satis�ed :

[Ĥ; (Î(�))2] = [Ĥ; (F̂ (�))2] = [Ĥ; B̂2] = 0: (16)

We note that, since for example [(Î(�))2; B̂2] 6= 0, we cannot have eigenstates of the Hamiltonian with both

good I
(�) spin and good B spin.

We call SU (4) a real symmetry for the system described by the Hamiltonian (12) if SU (4) is not only a

dynamical symmetry but if also the following conditions are ful�lled :

[Ĥ; Î
(�)
� ] = [Ĥ; F̂

(�)
� ] = [Ĥ; B̂�] = 0: (17)

Since it has been shown that

B̂+ = Î
(�)
+ F̂

(h)
+ + Î

(�)
� F̂

(p)
+ ; (18)

B̂� = F̂
(h)
� Î

(�)
� + F̂

(p)
� Î

(�)
+ : (19)
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we can conclude that SU (4) is a real symmetry for the system described by the Hamiltonian (12) when SU (4)

is a dynamical symmetry and when the hamiltonian commutes with the 8 ladder operators Î
(�)
� and F̂

(�)
� .

These are exactly the ladder operators needed to de�ne the SU (4) multiplet.

Similarly, we call SU (3) a dynamical symmetry for the system described by the Hamiltonian (12) if the

following conditions are satis�ed :

[Ĥ; Î2] = [Ĥ; F̂ 2] = [Ĥ; B̂
2] = 0; (20)

and SU (3) is called a real symmetry for the system described by the Hamiltonian (12) if not only SU (3) is

a dynamical symmetry but if the following conditions are also satis�ed :

[Ĥ; Î�] = [Ĥ; F̂�] = [Ĥ; B̂�] = 0: (21)

We remark that SU (4), as a real symmetry,immediately implies SU (3) as a real symmetry. Technically, there

remains a problem : Applying Î�; F̂� or B̂� on an eigenstate belonging to one nucleus leads to the mixing

of two eigenstates belonging to two di�erent nuclei. This means that, though SU (3) can be considered as a

real symmetry, the application of the ladder operators is ill-de�ned in the context of symmetries. Therefore,

we shall restrict ourselves to examining the SU (4) as real or dynamical symmetry.

We shall now illustrate the above, more general discussion, showing (i) experimental evidence for an SU (4)

symmetry at the N=Z=8 shell closure, and (ii) discuss the appearance of the EIBM and IBM-2 structures as

resulting from SU (4) symmetry breaking.
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Figure 3: Comparison of the K� = 0+ N = 4 SU (4) multiplet members in 16O and 24Mg. Thereby we can

put the �(2p-2h)�(2p-2h), �(4p-4h), �(4p-4h) excitations in 16O (denoted respectively by 16O(��), 16O(��),
16O(��)) and �(4p)-�(4p) (24Mg) band members in a given multiplet.

(i) In the nucleus 16O, there is experimental evidence for a K� = 0+ band and a K� = 2+ band associated

with 4p-4h excitations, featuring the properties of an asymmetric rotor [7, 8]. The microscopic structure

associated herewith is a �(2p-2h)�(2p-2h) excitation [9]. In the EIBM-2 context, this means that these levels

can belong to the SU(4) multiplet with N = 4. If the SU(4) symmetry is a real symmetry for this multiplet,

the same structure should be observed in the nucleus 24
12Mg12 too. Also the levels associated with the �(4p-4h)
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Figure 4: Comparison of the triaxial K� = 2+ band for the same SU (4) multiplet members as mentioned in

�gure 3.

and �(4p-4h) excitation of 168 O8 belong to the same multiplet and are good candidates to establish SU(4) as

a real symmetry. Results are presented in �gure 3 when comparing the K� = 0+ 4p-4h multiplets in 16O

(�(2p-2h)�(2p-2h); �(4p-4h); �(4p-4h)) with the �(4p)-�(4p) groundstate K� = 0+ band in 24Mg. Levels are!

tentatively associated with the �(4p-4h) and the �(4p-4h) con�gurations according to the SU (4) multiplet

structure. Similar comparisons are carried out for the K� = 2+ triaxial bands as appearing in 16O and in
24Mg (�gure 4). The comparison of experimental data gives good indications for the presence of a rather well

established SU (4) symmetry in these light nuclei.

(ii) Since SU (4) can be reduced to the algebras SUI(�) (2); SUI(�) (2); SUF (p) (2) or SUF (h) (2), the EIBM and

the IBM-2 can be considered as an SU (4)-symmetry breaking while one of the mentioned SU (2) algebra

becomes the real symmetry for the system. The I spin multiplet members as mentioned in [4, 5] are an

example of SUI(�) (2) symmetry. By doing so, it is obvious why we then consider I(�) = 0. The algebraic

structure describing these multiplets is then given by :

U
(�)
L (6) � G� � OL(3)

U (24) � U
(�)(12) � 


UI(�) (2)

(22)

where the generators of U (24) are [6] b
y
�;�;lmb�0;�0;l0m0 with �; �

0 = p; h describing the particle or hole

character of the bosons, �; �0 = �; � describing the charge character of the bosons and l; l
0 = 0; 2 for s-

and d-bosons, while m = �l; :::; l and m
0 = �l0; :::; l0. The generators for U (�)(12); U

(�)
L (6) and UI(�) (2) are

respectively b
y
�;�;lmb�0;�;l0m0 ;

P
� b

y
�;�;lmb�;�;l0m0 and

P
l;m b

y
�;�;lmb�0;�;lm. The algebras G� and OL(3) are

those commonly used in the IBM-1 reduction [1]. One can e.g. describe the complementary symmetry of

SUI(�) at neutron closed shell nuclei N=50, N=82.

The other symmetries, for example F (p) spin or F (h) spin, can be described using a complete analogous

reduction scheme. Each of these symmetries re
ects the breaking of the SU (4) symmetry into a symmetry

of a speci�c SU (2) subalgebra.

In conclusion, we have shown how the Extended Proton-Neutron Interacting Boson Model (EIBM-2) allows

the multi-particle-multi-hole excitations in 16
8 O8 and the regular low-lying bands in 24

12Mg12 to be described

as members of the same N = 4 SU (4) multiplet in the N=Z=8 mass region. Moreover, a consistent way has

6



been established in order to describe both the EIBM and the IBM-2 as resulting from an SU (4) symmetry

breaking. Other examples of realization of the SU (4) symmetry will be examined in other mass regions and

results will be published in a forthcoming article.
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