1,230 research outputs found

    Who Wants To Be Healthy?

    Get PDF

    Experimental evidence of delocalized states in random dimer superlattices

    Get PDF
    We study the electronic properties of GaAs-AlGaAs superlattices with intentional correlated disorder by means of photoluminescence and vertical dc resistance. The results are compared to those obtained in ordered and uncorrelated disordered superlattices. We report the first experimental evidence that spatial correlations inhibit localization of states in disordered low-dimensional systems, as our previous theoretical calculations suggested, in contrast to the earlier belief that all eigenstates are localized.Comment: 4 pages, 5 figures. Physical Review Letters (in press

    Scalable interconnections for remote indirect exciton systems based on acoustic transport

    Full text link
    Excitons, quasiparticles consisting of electron-hole pairs bound by the Coulomb interaction, are a potential medium for the processing of photonic information in the solid state. Information processing via excitons requires efficient techniques for the transport and manipulation of these uncharged particles.We have carried out a detailed investigation of the transport of excitons in GaAs quantum wells by surface acousticwaves. Based on these results, we introduce here a concept for the interconnection of multiple remote exciton systems based on the long-range transport of dipolar excitons by a network of configurable interconnects driven by acoustic wave beams. By combining this network with electrostatic gates, we demonstrate an integrated exciton multiplexer capable of interconnecting, gating, and routing exciton systems separated by millimeter distances. The multiplexer provides a scalable platform for the manipulation of exciton fluids with potential applications in information processingFinancial support by DFG Project No. SA 598/

    Network analysis identifies weak and strong links in a metapopulation system

    Get PDF
    The identification of key populations shaping the structure and connectivity of metapopulation systems is a major challenge in population ecology. The use of molecular markers in the theoretical framework of population genetics has allowed great advances in this field, but the prime question of quantifying the role of each population in the system remains unresolved. Furthermore, the use and interpretation of classical methods are still bounded by the need for a priori information and underlying assumptions that are seldom respected in natural systems. Network theory was applied to map the genetic structure in a metapopulation system by using microsatellite data from populations of a threatened seagrass, Posidonia oceanica, across its whole geographical range. The network approach, free from a priori assumptions and from the usual underlying hypotheses required for the interpretation of classical analyses, allows both the straightforward characterization of hierarchical population structure and the detection of populations acting as hubs critical for relaying gene flow or sustaining the metapopulation system. This development opens perspectives in ecology and evolution in general, particularly in areas such as conservation biology and epidemiology, where targeting specific populations is crucial
    corecore