6 research outputs found

    Effects of Maternal Care During Rearing in White Leghorn and Brown Nick Layer Hens on Cognition, Sociality and Fear

    No full text
    Both genetic background and maternal care can have a strong influence on cognitive and emotional development. To investigate these effects and their possible interaction, White Leghorn (LH) and Brown Nick (BN) chicks, two hybrid lines of layer hen commonly used commercially, were housed either with or without a mother hen in their first five weeks of life. From three weeks of age, the chicks were tested in a series of experiments to deduce the effects of breed and maternal care on their fear response, foraging and social motivation, and cognitive abilities. The LH were found to explore more and showed more attempts to reinstate social contact than BN. The BN were less active in all tests and less motivated than LH by social contact or by foraging opportunity. No hybrid differences were found in cognitive performance in the holeboard task. In general, the presence of a mother hen had unexpectedly little effect on behavior in both LH and BN chicks. It is hypothesized that hens from commercially used genetic backgrounds may have been inadvertently selected to be less responsive to maternal care than ancestral or non-commercial breeds. The consistent and strong behavioral differences between genetic strains highlights the importance of breed-specific welfare management processes

    Data from: Honey bee (Apis mellifera) sociability and nestmate affiliation is dependent on the social environment experienced post-eclosion

    No full text
    Underpinning the formation of a social group is the motivation of individuals to aggregate and interact with conspecifics, termed sociability. Here we developed an assay, inspired by vertebrate approaches to evaluate social behaviours, to simultaneously examine the development of honey bee (Apis mellifera) sociability and nestmate affiliation. Focal bees were placed in a testing chamber, which was separated from groups of nestmates and conspecific non-nestmates by single-layer mesh screens. Assessing how much time bees spent contacting the two mesh screens allowed us to quantify simultaneously how much bees sought proximity and interaction with other bees, and their preference for nestmates over non-nestmates. Both sociability and nestmate affiliation could be detected soon after emergence as an adult. Isolation early in adult life impaired honey bee sociability but there was no evidence for a critical period for the development of the trait since isolated bees exposed to their hive for 24 hours when as old as 6 days still recovered high levels of sociability. Our data show that even for advanced social insects, sociability is a developmental phenomenon and experience-dependent

    Effects of Maternal Care During Rearing in White Leghorn and Brown Nick Layer Hens on Cognition, Sociality and Fear

    No full text
    Both genetic background and maternal care can have a strong influence on cognitive and emotional development. To investigate these effects and their possible interaction, White Leghorn (LH) and Brown Nick (BN) chicks, two hybrid lines of layer hen commonly used commercially, were housed either with or without a mother hen in their first five weeks of life. From three weeks of age, the chicks were tested in a series of experiments to deduce the effects of breed and maternal care on their fear response, foraging and social motivation, and cognitive abilities. The LH were found to explore more and showed more attempts to reinstate social contact than BN. The BN were less active in all tests and less motivated than LH by social contact or by foraging opportunity. No hybrid differences were found in cognitive performance in the holeboard task. In general, the presence of a mother hen had unexpectedly little effect on behavior in both LH and BN chicks. It is hypothesized that hens from commercially used genetic backgrounds may have been inadvertently selected to be less responsive to maternal care than ancestral or non-commercial breeds. The consistent and strong behavioral differences between genetic strains highlights the importance of breed-specific welfare management processes

    Data from: Biogenic amine modulation of honey bee sociability and nestmate affiliation

    No full text
    Biogenic amines modulate a range of social behaviours, including sociability and mechanisms of group cohesion, in both vertebrates and invertebrates. Here, we tested if the biogenic amines modulate honey bee (Apis mellifera) sociability and nestmate affiliation. We examined the consequences of treatments with biogenic amines, agonists and antagonists on a bee's approach to, and subsequent social interactions with, conspecifics in both naturally hive-reared bees and isolated bees. We used two different treatment methods. Bees were first treated topically with compounds dissolved in the solvent dimethylformamide (dMF) applied to the dorsal thorax, but dMF had a significant effect on the locomotion and behaviour of the bees during the behavioural test that interfered with their social responses. Our second method used microinjection to deliver biogenic amines to the head capsule via the ocellar tract. Microinjection of dopamine and a dopamine antagonist had a strong effect on bee sociability, likelihood of interaction with bees, and nestmate affiliation. Octopamine treatment blocked social interaction with other bees, and serotonin increased the likelihood of social interactions. HPLC measurements showed that isolation reduced brain levels of biogenic amines compared to hive-reared bees. Our findings suggest that dopamine is an important neurochemical component of social motivation in bees. This finding advances a comparative understanding of the processes of social evolution
    corecore