1,036 research outputs found

    Null-stream veto for two co-located detectors: Implementation issues

    Full text link
    Time-series data from multiple gravitational wave (GW) detectors can be linearly combined to form a null-stream, in which all GW information will be cancelled out. This null-stream can be used to distinguish between actual GW triggers and spurious noise transients in a search for GW bursts using a network of detectors. The biggest source of error in the null-stream analysis comes from the fact that the detector data are not perfectly calibrated. In this paper, we present an implementation of the null-stream veto in the simplest network of two co-located detectors. The detectors are assumed to have calibration uncertainties and correlated noise components. We estimate the effect of calibration uncertainties in the null-stream veto analysis and propose a new formulation to overcome this. This new formulation is demonstrated by doing software injections in Gaussian noise.Comment: Minor changes; To appear in Class. Quantum Grav. (Proc. GWDAW10

    Physical instrumental vetoes for gravitational-wave burst triggers

    Full text link
    We present a robust strategy to \emph{veto} certain classes of instrumental glitches that appear at the output of interferometric gravitational-wave (GW) detectors.This veto method is `physical' in the sense that, in order to veto a burst trigger, we make use of our knowledge of the coupling of different detector subsystems to the main detector output. The main idea behind this method is that the noise in an instrumental channel X can be \emph{transferred} to the detector output (channel H) using the \emph{transfer function} from X to H, provided the noise coupling is \emph{linear} and the transfer function is \emph{unique}. If a non-stationarity in channel H is causally related to one in channel X, the two have to be consistent with the transfer function. We formulate two methods for testing the consistency between the burst triggers in channel X and channel H. One method makes use of the \emph{null-stream} constructed from channel H and the \emph{transferred} channel X, and the second involves cross-correlating the two. We demonstrate the efficiency of the veto by `injecting' instrumental glitches in the hardware of the GEO 600 detector. The \emph{veto safety} is demonstrated by performing GW-like hardware injections. We also show an example application of this method using 5 days of data from the fifth science run of GEO 600. The method is found to have very high veto efficiency with a very low accidental veto rate.Comment: Minor changes, To appear in Phys. Rev.

    Bayesian parameter estimation in the second LISA Pathfinder Mock Data Challenge

    Get PDF
    A main scientific output of the LISA Pathfinder mission is to provide a noise model that can be extended to the future gravitational wave observatory, LISA. The success of the mission depends thus upon a deep understanding of the instrument, especially the ability to correctly determine the parameters of the underlying noise model. In this work we estimate the parameters of a simplified model of the LISA Technology Package (LTP) instrument. We describe the LTP by means of a closed-loop model that is used to generate the data, both injected signals and noise. Then, parameters are estimated using a Bayesian framework and it is shown that this method reaches the optimal attainable error, the Cramer-Rao bound. We also address an important issue for the mission: how to efficiently combine the results of different experiments to obtain a unique set of parameters describing the instrument.Comment: 14 pages, 4 figures, submitted to PR

    Calibration of the LIGO displacement actuators via laser frequency modulation

    Full text link
    We present a frequency modulation technique for calibration of the displacement actuators of the LIGO 4-km-long interferometric gravitational-wave detectors. With the interferometer locked in a single-arm configuration, we modulate the frequency of the laser light, creating an effective length variation that we calibrate by measuring the amplitude of the frequency modulation. By simultaneously driving the voice coil actuators that control the length of the arm cavity, we calibrate the voice coil actuation coefficient with an estimated 1-sigma uncertainty of less than one percent. This technique enables a force-free, single-step actuator calibration using a displacement fiducial that is fundamentally different from those employed in other calibration methods.Comment: 10 pages, 5 figures, submitted to Classical and Quantum Gravit

    The burden of cardiovascular disease in sub-Saharan Africa

    Get PDF
    Correspondence: The burden of cardiovascular disease in sub-Saharan Africa by Anthony Mbewu

    The influence of laser relative intensity noise in the Laser Interferometer Space Antenna

    Get PDF
    LISA is an upcoming ESA mission that will detect gravitational waves in spaceby interferometrically measuring the separation between free-falling testmasses at picometer precision. To reach the desired performance, LISA willemploy the noise reduction technique time-delay interferometry (TDI), in whichmultiple raw interferometric readouts are time shifted and combined into thefinal scientific observables. Evaluating the performance in terms of these TDIvariables requires careful tracking of how different noise sources propagatethrough TDI, as noise correlations might affect the performance in unexpectedways. One example of such potentially correlated noise is the relativeintensity noise (RIN) of the six lasers aboard the three LISA satellites, whichwill couple into the interferometric phase measurements. In this article, wecalculate the expected RIN levels based on the current mission architecture andthe envisaged mitigation strategies. We find that strict requirements on thetechnical design reduce the effect from approximately 8.7 pm/rtHz perinter-spacecraft interferometer to that of a much lower sub-1 pm/rtHz noise,with typical characteristics of an uncorrelated readout noise after TDI. Ourinvestigations underline the importance of sufficient balanced detection of theinterferometric measurements.<br

    Accurate calibration of test mass displacement in the LIGO interferometers

    Full text link
    We describe three fundamentally different methods we have applied to calibrate the test mass displacement actuators to search for systematic errors in the calibration of the LIGO gravitational-wave detectors. The actuation frequencies tested range from 90 Hz to 1 kHz and the actuation amplitudes range from 1e-6 m to 1e-18 m. For each of the four test mass actuators measured, the weighted mean coefficient over all frequencies for each technique deviates from the average actuation coefficient for all three techniques by less than 4%. This result indicates that systematic errors in the calibration of the responses of the LIGO detectors to differential length variations are within the stated uncertainties.Comment: 10 pages, 6 figures, submitted on 31 October 2009 to Classical and Quantum Gravity for the proceedings of 8th Edoardo Amaldi Conference on Gravitational Wave

    The Newcastle ENDOPREMâ„¢: a validated patient reported experience measure for gastrointestinal endoscopy

    Get PDF
    OBJECTIVES: Measuring patient experience of gastrointestinal (GI) procedures is a key component of evaluation of quality of care. Current measures of patient experience within GI endoscopy are largely clinician derived and measured; however, these do not fully represent the experiences of patients themselves. It is important to measure the entirety of experience and not just experience directly during the procedure. We aimed to develop a patient-reported experience measure (PREM) for GI procedures. DESIGN: Phase 1: semi-structured interviews were conducted in patients who had recently undergone GI endoscopy or CT colonography (CTC) (included as a comparator). Thematic analysis identified the aspects of experience important to patients. Phase 2: a question bank was developed from phase 1 findings, and iteratively refined through rounds of cognitive interviews with patients who had undergone GI procedures, resulting in a pilot PREM. Phase 3: patients who had attended for GI endoscopy or CTC were invited to complete the PREM. Psychometric properties were investigated. Phase 4 involved item reduction and refinement. RESULTS: Phase 1: interviews with 35 patients identified six overarching themes: anxiety, expectations, information & communication, embarrassment & dignity, choice & control and comfort. Phase 2: cognitive interviews refined questionnaire items and response options. Phase 3: the PREM was distributed to 1650 patients with 799 completing (48%). Psychometric properties were found to be robust. Phase 4: final questionnaire refined including 54 questions assessing patient experience across five temporal procedural stages. CONCLUSION: This manuscript gives an overview of the development and validation of the Newcastle ENDOPREMâ„¢, which assesses all aspects of the GI procedure experience from the patient perspective. It may be used to measure patient experience in clinical care and, in research, to compare patients' experiences of different endoscopic interventions

    A template bank for gravitational waveforms from coalescing binary black holes: non-spinning binaries

    Get PDF
    Gravitational waveforms from the inspiral and ring-down stages of the binary black hole coalescences can be modelled accurately by approximation/perturbation techniques in general relativity. Recent progress in numerical relativity has enabled us to model also the non-perturbative merger phase of the binary black-hole coalescence problem. This enables us to \emph{coherently} search for all three stages of the coalescence of non-spinning binary black holes using a single template bank. Taking our motivation from these results, we propose a family of template waveforms which can model the inspiral, merger, and ring-down stages of the coalescence of non-spinning binary black holes that follow quasi-circular inspiral. This two-dimensional template family is explicitly parametrized by the physical parameters of the binary. We show that the template family is not only \emph{effectual} in detecting the signals from black hole coalescences, but also \emph{faithful} in estimating the parameters of the binary. We compare the sensitivity of a search (in the context of different ground-based interferometers) using all three stages of the black hole coalescence with other template-based searches which look for individual stages separately. We find that the proposed search is significantly more sensitive than other template-based searches for a substantial mass-range, potentially bringing about remarkable improvement in the event-rate of ground-based interferometers. As part of this work, we also prescribe a general procedure to construct interpolated template banks using non-spinning black hole waveforms produced by numerical relativity.Comment: A typo fixed in Eq.(B11
    • …
    corecore