9 research outputs found

    Maturation of the functional mouse CRES amyloid from globular form

    Get PDF
    The epididymal lumen contains a complex cystatin-rich nonpathological amyloid matrix with putative roles in sperm maturation and sperm protection. Given our growing understanding for the biological function of this and other functional amyloids, the problem still remains: how functional amyloids assemble including their initial transition to early oligomeric forms. To examine this, we developed a protocol for the purification of nondenatured mouse CRES, a component of the epididymal amyloid matrix, allowing us to examine its assembly to amyloid under conditions that may mimic those in vivo. Herein we use X-ray crystallography, solution-state NMR, and solid-state NMR to follow at the atomic level the assembly of the CRES amyloidogenic precursor as it progressed from monomeric folded protein to an advanced amyloid. We show the CRES monomer has a typical cystatin fold that assembles into highly branched amyloid matrices, comparable to those in vivo, by forming β-sheet assemblies that our data suggest occur via two distinct mechanisms: a unique conformational switch of a highly flexible disulfide-anchored loop to a rigid β-strand and by traditional cystatin domain swapping. Our results provide key insight into our understanding of functional amyloid assembly by revealing the earliest structural transitions from monomer to oligomer and by showing that some functional amyloid structures may be built by multiple and distinctive assembly mechanisms

    Functional Amyloids in Reproduction

    No full text
    Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological

    Progesterone-Dependent Deoxyribonucleic Acid Looping between RUSH/SMARCA3 and Egr-1 Mediates Repression by c-Rel

    No full text
    Steroids regulate alternative splicing of RUSH/SMARCA3. The full-length, progesterone-dependent α-isoform and the 3′-truncated, estrogen-dependent β-isoform have identical DNA-binding domains, nuclear localization signals, and RING fingers. Transcription of RUSH/SMARCA3 is mediated by a bipartite progesterone receptor half-site/overlapping Y-box combination (−38/−26), where progesterone activation is attenuated by nuclear factor Y binding. Regulation also involves two GC-rich sequences in the proximal promoter (−162/+90) and a RUSH/SMARCA3 site (−616/−611) in the 5′-untranslated region. Isoform-specific binding to the RUSH/SMARCA3 site is dictated by the hormonal milieu, as is the availability of factors that bind to the distal GC-rich site (−131/−126), a composite binding site for Egr-1/specific protein-1/3/Myc-associated zinc finger protein/myeloid zinc finger-1/c-Rel, and the proximal GC-rich site (−62/−53), which binds only Sp1/3. TransSignal TF-TF interaction arrays, supershift assays, and chromatin immunoprecipitation analyses confirmed strong physical interactions between RUSH/Egr-1 and RUSH/c-Rel that were visualized with fluorescent microscopy. Higher-order, long-range interactions between RUSH and Egr-1/c-Rel derivative of the anisotropic flexibility of the intervening DNA sequence were shown by Chromosome Conformation Capture assay. Glutathione S-transferase pull-downs confirmed that the RING finger is the protein-binding domain, suggesting that the RUSH isoforms have equivalent potential for protein interactions. Transient transfection assays showed that the cooperative interaction between RUSH and Egr-1 mediates repression by c-Rel. Thus, progesterone-induced transcription is fine-tuned by isoform-specific autoregulation, in which newly synthesized RUSH-1α binds DNA and interacts physically with liganded Egr-1 in the proximal promoter via a DNA-looping mechanism to mediate repression by c-Rel. In the absence of progesterone induction, RUSH-1β replaces RUSH-1α binding, Egr-1 and c-Rel are unavailable as molecular ties, and DNA looping is disfavored
    corecore